

Index theory for manifolds with corners

THIRY Florian

Institut de mathématiques de Toulouse

February 2025

1 Boundary index

2 Family of embedded corners manifold

3 Computation of the obstruction : $K_*(C^*(G_F))$

C^* -algebraic index

Let

$$\begin{array}{ccccccc} & 0 & 0 & 0 & & & \\ & \downarrow & \downarrow & \downarrow & & & \\ 0 & \rightarrow & A_1 & \rightarrow & A_2 & \xrightarrow{r} & A_3 \rightarrow 0 \\ & \downarrow & & \downarrow & & \downarrow & \\ 0 & \rightarrow & B_1 & \rightarrow & B_2 & \xrightarrow{\eta} & B_3 \rightarrow 0 \\ & \downarrow & & \downarrow^{\sigma} & & \downarrow & \\ 0 & \rightarrow & C_1 & \rightarrow & C_2 & \rightarrow & C_3 \rightarrow 0 \\ & \downarrow & & \downarrow & & \downarrow & \\ & 0 & 0 & 0 & & & \end{array}$$

B_1, B_2, B_3, C_1, C_2 and C_3 being unitary C^* -algebras. And $\delta : K_1(C_2) \rightarrow K_0(A_2)$ the index map of the second column.

From this diagram we can produce a diagonal exact sequence :

$$0 \longrightarrow A_1 \longrightarrow B_2 \xrightarrow{\sigma_{\text{diag}} = (\sigma, \eta)} C_2 \oplus B_3 \xrightarrow{C_3} 0.$$

Theorem : K-theoretical obstruction

Let $T \in B_2$ s.t $\sigma(T)$ invertible. Then the following are equivalents

- $\exists T' \in M_N(B_2)$ with $\sigma(T')$ invertible with $[\sigma(T)]_1 = [\sigma(T')]_1$ and $\eta(T')$ invertible
- $K_0(r)(\delta[\sigma(T)]_1) = 0$.

In particular $\sigma_{\text{diag}}(T')$ will be invertible in that case.

Application : Elliptic operators on a singular manifold ?

From a Lie groupoid $G \rightrightarrows G^{(0)}$ the pseudodifferential calculus defined on G fit in the exact sequence :

$$0 \longrightarrow C^*(G) \longrightarrow \overline{\psi^0}(G) \xrightarrow{\sigma} C_0(S^*G) \longrightarrow 0 .$$

Application : Elliptic operators on a singular manifold ?

From a Lie groupoid $G \rightrightarrows G^{(0)}$ the pseudodifferential calculus defined on G fit in the exact sequence :

$$0 \longrightarrow C^*(G) \longrightarrow \overline{\psi^0}(G) \xrightarrow{\sigma} C_0(S^*G) \longrightarrow 0.$$

If $G^{(0)} = U \sqcup F$ with restrictions $G_U \rightrightarrows U$ and $G_F \rightrightarrows F$ we get :

Application : Elliptic operators on a singular manifold ?

From a Lie groupoid $G \rightrightarrows G^{(0)}$ the pseudodifferential calculus defined on G fit in the exact sequence :

$$0 \longrightarrow C^*(G) \longrightarrow \overline{\psi^0}(G) \xrightarrow{\sigma} C_0(S^*G) \longrightarrow 0.$$

If $G^{(0)} = U \sqcup F$ with restrictions $G_U \rightrightarrows U$ and $G_F \rightrightarrows F$ we get :

$$\begin{array}{ccccccc}
 & 0 & & 0 & & 0 & \\
 & \downarrow & & \downarrow & & \downarrow & \\
 0 \rightarrow C^*(G_U) \rightarrow C^*(G) & \xrightarrow{r} & C^*(G_F) \rightarrow 0 & & & & \\
 & \downarrow & & \downarrow & & \downarrow & \\
 0 \rightarrow \overline{\psi^0}(G_U) \rightarrow \overline{\psi^0}(G) & \xrightarrow{\sigma} & \overline{\psi^0}(G_F) \rightarrow 0 & & & & \\
 & \downarrow & & \downarrow & & \downarrow & \\
 0 \rightarrow C_0(S^*G_U) \rightarrow C_0(S^*G) & \rightarrow & C_0(S^*G_F) \rightarrow 0 & & & & \\
 & \downarrow & & \downarrow & & \downarrow & \\
 0 & & 0 & & 0 & &
 \end{array}$$

In this context, the boundary index is defined by :

$$Ind_{\partial} := K_0(r) \circ \delta : K_1(C_0(S^*G)) \longrightarrow K_0(C^*(G_F)).$$

The elliptic operators on G which are "diagonal invertible" will be called *Fully elliptic* And the diagram chasing statement could be expressed as follows :

Theorem

$$Ind_{\partial}([\sigma(T)]_1) = 0 \text{ iff } \exists T' \in \overline{\psi^0}(G) \text{ Fully elliptic with } \sigma(T) \text{ and } \sigma(T') \text{ stably homotopic.}$$

In this context, the boundary index is defined by :

$$Ind_{\partial} := K_0(r) \circ \delta : K_1(C_0(S^*G)) \longrightarrow K_0(C^*(G_F)).$$

The elliptic operators on G which are "diagonal invertible" will be called *Fully elliptic* And the diagram chasing statement could be expressed as follows :

Theorem

$$Ind_{\partial}([\sigma(T)]_1) = 0 \text{ iff } \exists T' \in \overline{\psi^0}(G) \text{ Fully elliptic with } \sigma(T) \text{ and } \sigma(T') \text{ stably homotopic.}$$

Questions :

- Computation of Ind_{∂} ?
- Computation of $K_0(C^*(G_F))$?

In this context, the boundary index is defined by :

$$Ind_{\partial} := K_0(r) \circ \delta : K_1(C_0(S^*G)) \longrightarrow K_0(C^*(G_F)).$$

The elliptic operators on G which are "diagonal invertible" will be called *Fully elliptic* And the diagram chasing statement could be expressed as follows :

Theorem

$$Ind_{\partial}([\sigma(T)]_1) = 0 \text{ iff } \exists T' \in \overline{\psi^0}(G) \text{ Fully elliptic with } \sigma(T) \text{ and } \sigma(T') \text{ stably homotopic.}$$

Questions :

- Computation of Ind_{∂} ?
- Computation of $K_0(C^*(G_F))$?

→ Need of a geometrical context and an adapted groupoid to arise singularities.

Definition : manifold with corners

A manifold with corners X is a topological space where each $x \in X$ has a neighborhood diffeomorphic to $\mathbb{R}^{k+} \times \mathbb{R}^{n-k}$. We denote $k := \text{codim}(x)$.

Connected components of $\{x \in X : \text{codim}(x) = k\}$ are called *codimension k faces*, their set is denoted $\mathcal{F}_k(X)$.

Definition : manifold with corners

A manifold with corners X is a topological space where each $x \in X$ has a neighborhood diffeomorphic to $\mathbb{R}^{k+} \times \mathbb{R}^{n-k}$. We denote $k := \text{codim}(x)$.

Connected components of $\{x \in X : \text{codim}(x) = k\}$ are called *codimension k faces*, their set is denoted $\mathcal{F}_k(X)$.

Definition : manifold with embedded corners

Such a manifold is a topological space endowed with a sub algebra $:= C^\infty(X) \subset C^0(X)$ s.t :

- $\exists \widetilde{X}$ smooth manifold, $i : X \rightarrow \widetilde{X}$ with $i^* C^0(\widetilde{X}) = C^\infty(X)$
- $\exists (\rho_i)_{i=1}^N$, $\rho_i : \widetilde{X} \rightarrow \mathbb{R}$ smooth. s.t $i(X) = \bigcap_{i \in \llbracket 1, N \rrbracket} \{\rho_i \geq 0\}$
- $\forall J \subset \llbracket 1, N \rrbracket$, $(d_x \rho_i)_{i \in J}$ are linearly independant for $x \in \bigcap_{i \in J} \{\rho_i = 0\}$.

Geometrical framework : manifold with corners

Definition : manifold with corners

A manifold with corners X is a topological space where each $x \in X$ has a neighborhood diffeomorphic to $\mathbb{R}^{k+} \times \mathbb{R}^{n-k}$. We denote $k := \text{codim}(x)$.

Connected components of $\{x \in X : \text{codim}(x) = k\}$ are called *codimension k faces*, their set is denoted $\mathcal{F}_k(X)$.

Definition : manifold with embedded corners

Such a manifold is a topological space endowed with a sub algebra $:= C^\infty(X) \subset C^0(X)$ s.t. :

- $\exists \widetilde{X}$ smooth manifold, $i : X \rightarrow \widetilde{X}$ with $i^* C^0(\widetilde{X}) = C^\infty(X)$
- $\exists (\rho_i)_{i=1}^N$, $\rho_i : \widetilde{X} \rightarrow \mathbb{R}$ smooth. s.t $i(X) = \bigcap_{i \in \llbracket 1, N \rrbracket} \{\rho_i \geq 0\}$
- $\forall J \subset \llbracket 1, N \rrbracket$, $(d_x \rho_i)_{i \in J}$ are linearly independant for $x \in \bigcap_{i \in J} \{\rho_i = 0\}$.

Definition : family of manifolds with embedded corners

We call *Family of manifold with embedded corners* a submersion $\pi : \widetilde{X} \longrightarrow B$ from an embedded corner manifold to a smooth manifold such that : $\forall f \subset \widetilde{X}$ face, $\pi|_f : f \twoheadrightarrow B$ is still surjective.

For now I suppose also : $\mathcal{N}(\widetilde{X}, H_i) = H_i \times \mathbb{R}$.

Blup groupoid

Which groupoid for such an embedded corner family ?

Need of a notion of Blow-up of manifolds :

Blup groupoid

Which groupoid for such an embedded corner family ?

Need of a notion of Blow-up of manifolds :

$$(X, Y) \in \mathcal{C}_2^\infty \rightsquigarrow \mathcal{D}(X, Y) := X \times_{\sim} \mathbb{R}^* \bigsqcup \mathcal{N}(X, Y).$$

Blup groupoid

Which groupoid for such an embedded corner family ?

Need of a notion of Blow-up of manifolds :

$$(X, Y) \in \mathcal{C}_2^\infty \rightsquigarrow \mathcal{D}(X, Y) := X \times \mathbb{R}^* \overset{\sim}{\sqcup} \mathcal{N}(X, Y).$$

Using zoom action : $Blup(X, Y) := [\overset{\sim}{\mathcal{D}}(X, Y) \smallsetminus (Y \times \mathbb{R})]/\mathbb{R}^*$.

Blup groupoid

Which groupoid for such an embedded corner family ?

Need of a notion of Blow-up of manifolds :

$(X, Y) \in \mathcal{C}_2^\infty \rightsquigarrow \mathcal{D}(X, Y) := X \times \mathbb{R}^* \bigsqcup \mathcal{N}(X, Y)$.

Using zoom action : $\tilde{\mathcal{D}}(X, Y) := [\mathcal{D}(X, Y) \setminus (Y \times \mathbb{R})]/\mathbb{R}^*$.

Blup groupoid

To a pair of embedded Lie groupoids

$$\begin{array}{ccc} H & \subseteq & G \\ \Downarrow & & \Downarrow \\ H^{(0)} & \subseteq & G^{(0)} \end{array}$$

, we can associate :

$$\begin{array}{ccc} Bst(G, H) & & \\ \Downarrow & & \Downarrow \\ Blup(G^{(0)}, H^{(0)}) & & \end{array}$$

Blup groupoid

Which groupoid for such an embedded corner family ?

Need of a notion of Blow-up of manifolds :

$$(X, Y) \in \mathcal{C}_2^\infty \rightsquigarrow \mathcal{D}(X, Y) := X \times \mathbb{R}^* \bigsqcup \mathcal{N}(X, Y).$$

Using zoom action : $\tilde{\mathcal{D}}(X, Y) := [\mathcal{D}(X, Y) \setminus (Y \times \mathbb{R})]/\mathbb{R}^*$.

Blup groupoid

To a pair of embedded Lie groupoids

$$\begin{array}{ccc} H & \subseteq & G \\ \Downarrow & & \Downarrow \\ H^{(0)} & \subseteq & G^{(0)} \end{array}$$

, we can associate :

$$\begin{array}{ccc} Bst(G, H) & & \\ \Downarrow & & \Downarrow \\ Blup(G^{(0)}, H^{(0)}) & & \end{array}$$

Functionality

If we restrict to Lie groupoid pair morphisms

$$\begin{array}{ccccccc} H_1 & \subseteq & G_1 & \xrightarrow{f} & G_2 & \supseteq & H_2 \\ \Downarrow & & \Downarrow & & \Downarrow & & \Downarrow \\ H_1^{(0)} & \subseteq & G_1^{(0)} & \xrightarrow{f^{(0)}} & G_2^{(0)} & \supseteq & H_2^{(0)} \end{array}$$

$(f^{(0)})^{-1}(H_2^{(0)}) = H_1^{(0)}$ and $f^{(0)} : (G_1^{(0)}, H_1^{(0)}) \rightarrow (G_2^{(0)}, H_2^{(0)})$ has its $d_N f$ fiberwise injective.
Then the association is functorial.

Monthubert groupoid

We set :

$$\left\{ \begin{array}{ll} Mt_1(X) = & Bst(\tilde{X} \times \tilde{X}, H_1 \times H_1) \\ Mt_{k+1}(X) = & Bst \left(Mt_k(X), Bst(H_{k+1} \times H_{k+1}, \bigsqcup_{\alpha \leq k} H_{k+1,\alpha} \times H_{k+1,\alpha}) \right) \end{array} \right.$$

We set $\Gamma_b(X) := Mt_N^c(X)|_X$ the Monthubert Puff groupoid.

Monthubert groupoid

We set :

$$\begin{cases} Mt_1(X) = Bst(\overset{\circ}{X} \times \overset{\circ}{X}, H_1 \times H_1) \\ Mt_{k+1}(X) = Bst \left(Mt_k(X), Bst(H_{k+1} \underset{B}{\times} H_{k+1}, \bigsqcup_{\alpha \leq k} H_{k+1,\alpha} \underset{B}{\times} H_{k+1,\alpha}) \right). \end{cases}$$

We set $\Gamma_b(X) := Mt_N^c(X)|_X$ the Monthubert Puff groupoid.

Computing it, we get :

$$\Gamma_b(X) = \overset{\circ}{X} \underset{B}{\times} \overset{\circ}{X} \underset{\sim}{\bigsqcup}_{g \in \mathcal{F}_1} (g \underset{B}{\times} g \times \mathbb{R}^{*+}) \underset{\sim}{\bigsqcup}_{f \in \mathcal{F}_2} (f \underset{B}{\times} f \times \mathbb{R}^{*+2}).$$

Monthubert groupoid

We set :

$$\begin{cases} Mt_1(X) = Bst(\overset{\circ}{X} \times \overset{\circ}{X}, H_1 \times H_1) \\ Mt_{k+1}(X) = Bst \left(Mt_k(X), Bst(H_{k+1} \times H_{k+1}, \bigsqcup_{\alpha \leq k} H_{k+1,\alpha} \times H_{k+1,\alpha}) \right). \end{cases}$$

We set $\Gamma_b(X) := Mt_N^c(X)|_X$ the Monthubert Puff groupoid.

Computing it, we get :

$$\Gamma_b(X) = \overset{\circ}{X} \times \overset{\circ}{X} \bigsqcup_{\substack{g \in \mathcal{F}_1 \\ \sim}} (g \times g \times \mathbb{R}^{*+}) \bigsqcup_{\substack{f \in \mathcal{F}_2 \\ \sim}} (f \times f \times \mathbb{R}^{*+2}).$$

Taking back our boundary index, our index map in this context corresponds to :

$$K_0(C^*(\Gamma_b(X))) \xrightarrow{K_0(r)} K_0 \left(C^* \left(\bigsqcup_{\substack{g \in \mathcal{F}_1 \\ \sim}} (g \times g \times \mathbb{R}^{*+}) \bigsqcup_{\substack{f \in \mathcal{F}_2 \\ \sim}} (f \times f \times \mathbb{R}^{*+2}) \right) \right)$$

$\underbrace{\hspace{10cm}}_{:= \Gamma_b(X)|_{\mathcal{F}_1 \cup \mathcal{F}_2} = G_F}$

$\delta \uparrow$

$$K_1(C_0(S^* G))$$

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

Remark :

$$K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1})) = \bigoplus_{g \in \mathcal{F}_1} K_*(g \times_B g \times \mathbb{R}^{*+}) = K_{1-*}(C_0(B))^{\#\mathcal{F}_1}, \text{ and the same way}$$

$$K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_2})) = K_*(C_0(B))^{\#\mathcal{F}_2}.$$

From the exact sequence :

$$0 \longrightarrow C^*(\Gamma_b(X)_{|\mathcal{F}_1}) \longrightarrow C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}) \longrightarrow C^*(\Gamma_b(X)_{|\mathcal{F}_2}) \longrightarrow 0.$$

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

Remark :

$$K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1})) = \bigoplus_{g \in \mathcal{F}_1} K_*(g \times_B g \times \mathbb{R}^{*+}) = K_{1-*}(C_0(B))^{\#\mathcal{F}_1}, \text{ and the same way}$$

$$K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_2})) = K_*(C_0(B))^{\#\mathcal{F}_2}.$$

From the exact sequence :

$$0 \longrightarrow C^*(\Gamma_b(X)_{|\mathcal{F}_1}) \longrightarrow C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}) \longrightarrow C^*(\Gamma_b(X)_{|\mathcal{F}_2}) \longrightarrow 0.$$

We produce the 6-term exact sequence :

$$\begin{array}{ccccccc} K_0(C_0(B))^{\#\mathcal{F}_1} & \longrightarrow & K_1(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2})) & \longrightarrow & K_1(C_0(B))^{\#\mathcal{F}_2} & & \\ \uparrow \delta_0 & & & & \downarrow \delta_1 & & \\ K_0(C_0(B))^{\#\mathcal{F}_2} & \longleftarrow & K_0(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2})) & \longleftarrow & K_1(C_0(B))^{\#\mathcal{F}_1} & & \end{array}$$

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

Remark :

$$K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1})) = \bigoplus_{g \in \mathcal{F}_1} K_*(g \times g \times \mathbb{R}^{*+})_B = K_{1-*}(C_0(B))^{\# \mathcal{F}_1}, \text{ and the same way}$$

$$K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_2})) = K_*(C_0(B))^{\# \mathcal{F}_2}.$$

From the exact sequence :

$$0 \longrightarrow C^*(\Gamma_b(X)_{|\mathcal{F}_1}) \longrightarrow C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}) \longrightarrow C^*(\Gamma_b(X)_{|\mathcal{F}_2}) \longrightarrow 0.$$

We produce the 6-term exact sequence :

$$\begin{array}{ccccccc} K_0(C_0(B))^{\# \mathcal{F}_1} & \longrightarrow & K_1(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2})) & \longrightarrow & K_1(C_0(B))^{\# \mathcal{F}_2} \\ \delta_0 \uparrow & & & & \downarrow \delta_1 \\ K_0(C_0(B))^{\# \mathcal{F}_2} & \longleftarrow & K_0(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2})) & \longleftarrow & K_1(C_0(B))^{\# \mathcal{F}_1} \end{array}$$

The $\delta_i : K_i(C_0(B))^{\# \mathcal{F}_2} \rightarrow K_i(C_0(B))^{\# \mathcal{F}_1}$ are coordinatewise the index maps of the sequence :

$$0 \longrightarrow C^*(\Gamma_b(X)_{|g}) \longrightarrow C^*(\Gamma_b(X)_{|g \cup f}) \longrightarrow C^*(\Gamma_b(X)_{|f}) \longrightarrow 0.$$

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

Remark :

$$K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1})) = \bigoplus_{g \in \mathcal{F}_1} K_*(g \times_B g \times \mathbb{R}^{*+}) = K_{1-*}(C_0(B))^{\# \mathcal{F}_1}, \text{ and the same way}$$

$$K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_2})) = K_*(C_0(B))^{\# \mathcal{F}_2}.$$

From the exact sequence :

$$0 \longrightarrow C^*(\Gamma_b(X)_{|\mathcal{F}_1}) \longrightarrow C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}) \longrightarrow C^*(\Gamma_b(X)_{|\mathcal{F}_2}) \longrightarrow 0.$$

We produce the 6-term exact sequence :

$$\begin{array}{ccccccc}
 K_0(C_0(B))^{\# \mathcal{F}_1} & \longrightarrow & K_1(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2})) & \longrightarrow & K_1(C_0(B))^{\# \mathcal{F}_2} \\
 \delta_0 \uparrow & & & & \downarrow \delta_1 \\
 K_0(C_0(B))^{\# \mathcal{F}_2} & \longleftarrow & K_0(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2})) & \longleftarrow & K_1(C_0(B))^{\# \mathcal{F}_1}
 \end{array}$$

The $\delta_i : K_i(C_0(B))^{\# \mathcal{F}_2} \rightarrow K_i(C_0(B))^{\# \mathcal{F}_1}$ are coordinatewise the index maps of the sequence :

$$0 \longrightarrow C^*(\Gamma_b(X)_{|g}) \longrightarrow C^*(\Gamma_b(X)_{|g \cup f}) \longrightarrow C^*(\Gamma_b(X)_{|f}) \longrightarrow 0.$$

If $f \not\subset \partial \bar{g} : g \times_B g \times \mathbb{R}^{*+} \sqcup f \times_B f \times \mathbb{R}^{*+2} = g \times_B g \times \mathbb{R}^{*+} \sqcup f \times_B f \times \mathbb{R}^{*+2}$. Splitting then index vanishes.

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

If $f \subset \overline{g} \cap \overline{g'}$: We have $g \subset H_i$, $g' \subset H_j$.

Let $U \subset \widetilde{X}$ a tubular neighborhood of f : $(U \cap H_k \neq \emptyset \Rightarrow k \in \{i, j\})$, $U \cap H_i \cap H_j = f$:
 $U = f \times \mathbb{R}^2$ $U_g = f \times (\mathbb{R}^{+*} \times \{0\})$ $U_{g'} = f \times (\{0\} \times \mathbb{R}^{+*})$ $U_f = f \times (\{0\} \times \{0\}) = f$.

Computation of $K_*(C^*(\Gamma_b(X)|_{\mathcal{F}_1 \cup \mathcal{F}_2}))$

If $f \subset \overline{g} \cap \overline{g'}$: We have $g \subset H_i$, $g' \subset H_j$.

Let $U \subset \widetilde{X}$ a tubular neighborhood of f : $(U \cap H_k \neq \emptyset \Rightarrow k \in \{i, j\})$, $U \cap H_i \cap H_j = f$:
 $U = f \times \mathbb{R}^2$ $U_g = f \times (\mathbb{R}^{+*} \times \{0\})$ $U_{g'} = f \times (\{0\} \times \mathbb{R}^{+*})$ $U_f = f \times (\{0\} \times \{0\}) = f$.

$$\begin{aligned}
 \Gamma_b(X)|_U &= Mt_N(X)|_U = Bst^c \left(Bst^c(U \underset{B}{\times} U, U_g \underset{B}{\times} U_g), Bst^c(U_{g'} \underset{B}{\times} U_{g'}, U_f \underset{B}{\times} U_f) \right) \\
 &= f \underset{B}{\times} f \times \left((\mathbb{R}^{+*2})^2 \bigsqcup_{\sim} (\mathbb{R}^{+*} \times \{0\})^2 \times \mathbb{R}^{+*} \bigsqcup_{\sim} (\{0\} \times \mathbb{R}^{+*})^2 \times \mathbb{R}^{+*} \bigsqcup_{\sim} (\{0\}^2)^2 \times \mathbb{R}^{+*2} \right) \\
 &= (f \underset{B}{\times} f \times (\mathbb{R}^{+*2})^2) \bigsqcup_{\sim} \Gamma_b(X)|_{U_g} \bigsqcup_{\sim} \Gamma_b(X)|_{U_{g'}} \bigsqcup_{\sim} \Gamma_b(X)|_f.
 \end{aligned}$$

Computation of $K_*(C^*(\Gamma_b(X)|_{\mathcal{F}_1 \cup \mathcal{F}_2}))$

If $f \subset \overline{g} \cap \overline{g'}$: We have $g \subset H_i$, $g' \subset H_j$.

Let $U \subset \widetilde{X}$ a tubular neighborhood of f : $(U \cap H_k \neq \emptyset \Rightarrow k \in \{i, j\})$, $U \cap H_i \cap H_j = f$:
 $U = f \times \mathbb{R}^2$ $U_g = f \times (\mathbb{R}^{+*} \times \{0\})$ $U_{g'} = f \times (\{0\} \times \mathbb{R}^{+*})$ $U_f = f \times (\{0\} \times \{0\}) = f$.

$$\begin{aligned}
 \Gamma_b(X)|_U &= Mt_N(X)|_U = Bst^c \left(\underset{B}{Bst^c}(U \times U, U_g \times U_g), \underset{B}{Bst^c}(U_{g'} \times U_{g'}, U_f \times U_f) \right) \\
 &= f \times f \times \left((\mathbb{R}^{+*2})^2 \bigsqcup_{\sim} (\mathbb{R}^{+*} \times \{0\})^2 \times \mathbb{R}^{+*} \bigsqcup_{\sim} (\{0\} \times \mathbb{R}^{+*})^2 \times \mathbb{R}^{+*} \bigsqcup_{\sim} (\{0\}^2)^2 \times \mathbb{R}^{+*2} \right) \\
 &= (f \times f \times (\mathbb{R}^{+*2})^2) \bigsqcup_{\sim} \Gamma_b(X)|_{U_g} \bigsqcup_{\sim} \Gamma_b(X)|_{U_{g'}} \bigsqcup_{\sim} \Gamma_b(X)|_f.
 \end{aligned}$$

$$\begin{array}{lll}
 (x_1, x_2), (y_1, y_2) & \mapsto & \left(\frac{y_1}{x_1}, x_1, \frac{y_2}{x_2}, x_2 \right) \\
 (x_1, 0), (y_1, 0), \mu & \mapsto & \left(\frac{y_1}{x_1}, x_1, \mu, 0 \right) \\
 (0, x_2), (0, y_2), \lambda & \mapsto & \left(\lambda, 0, \frac{y_2}{x_2}, x_2 \right) \\
 (0, 0), (0, 0), \lambda, \mu & \mapsto & \left(\lambda, 0, \mu, 0 \right)
 \end{array}$$

Which has the chart :

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

Setting the groupoid $\mathbb{R}^+ \rtimes_j \mathbb{R}^2$ associated to the action $\mathbb{R}^+ \curvearrowright \mathbb{R}^2$ defined by $t * (\lambda_1, \lambda_2) := te^{\lambda_j}$, we have :

$$\Gamma_b(X)_{|f \cup U_g} \underset{B}{\cong} f \times f \times (\mathbb{R}^+ \rtimes_1 \mathbb{R}^2)$$

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

Setting the groupoid $\mathbb{R}^+ \rtimes_j \mathbb{R}^2$ associated to the action $\mathbb{R}^+ \curvearrowright \mathbb{R}^2$ defined by $t * (\lambda_1, \lambda_2) := te^{\lambda_j}$, we have :

$$\Gamma_b(X)_{|f \cup U_g} \underset{B}{\cong} f \times f \times (\mathbb{R}^+ \rtimes_1 \mathbb{R}^2) \text{ and } \Gamma_b(X)_{|f \cup U_{g'}} \underset{B}{\cong} f \times f \times (\mathbb{R}^+ \rtimes_2 \mathbb{R}^2).$$

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

Setting the groupoid $\mathbb{R}^+ \rtimes_j \mathbb{R}^2$ associated to the action $\mathbb{R}^+ \curvearrowright \mathbb{R}^2$ defined by $t * (\lambda_1, \lambda_2) := te^{\lambda_j}$, we have :

$$\Gamma_b(X)_{|f \cup U_g} \underset{B}{\cong} f \times f \times (\mathbb{R}^+ \rtimes_1 \mathbb{R}^2) \text{ and } \Gamma_b(X)_{|f \cup U_{g'}} \underset{B}{\cong} f \times f \times (\mathbb{R}^+ \rtimes_2 \mathbb{R}^2).$$

$$0 \longrightarrow C^*(\Gamma_b(X)_{|U_g}) \xrightarrow{\quad} \overbrace{C^*(\Gamma_b(X)_{|U_g \cup f})}^{\cong C^*(f \times f \times (\mathbb{R}^+ \rtimes_1 \mathbb{R}^2))} \xrightarrow{\quad} C^*(\Gamma_b(X)_{|f}) \longrightarrow 0$$

α

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

Setting the groupoid $\mathbb{R}^+ \rtimes_j \mathbb{R}^2$ associated to the action $\mathbb{R}^+ \curvearrowright \mathbb{R}^2$ defined by $t * (\lambda_1, \lambda_2) := te^{\lambda_j}$, we have :

$$\Gamma_b(X)_{|f \cup U_g} \underset{B}{\cong} f \times f \times (\mathbb{R}^+ \rtimes_1 \mathbb{R}^2) \text{ and } \Gamma_b(X)_{|f \cup U_{g'}} \underset{B}{\cong} f \times f \times (\mathbb{R}^+ \rtimes_2 \mathbb{R}^2).$$

$$0 \longrightarrow C^*(\Gamma_b(X)_{|U_g}) \xrightarrow{\quad} \overbrace{C^*(\Gamma_b(X)_{|U_g \cup f})}^{\cong C^*(f \times f \times (\mathbb{R}^+ \rtimes_1 \mathbb{R}^2))} \xrightarrow{\quad} C^*(\Gamma_b(X)_{|f}) \longrightarrow 0$$

α

$$0 \longrightarrow C^*(\Gamma_b(X)_{|U_{g'}}) \xrightarrow{\quad} \overbrace{C^*(\Gamma_b(X)_{|U_{g'} \cup f})}^{\cong C^*(f \times f \times (\mathbb{R}^+ \rtimes_2 \mathbb{R}^2))} \xrightarrow{\quad} C^*(\Gamma_b(X)_{|f}) \longrightarrow 0$$

$-\alpha$

Lemma : (proof in progress)

The maps $K_*(i) : K_*(C^*(\Gamma_b(X)_{|U_g})) \longrightarrow K_*(C^*(\Gamma_b(X)_{|g}))$ are isomorphisms.

$$\begin{array}{ccccccc} 0 & \longrightarrow & C^*(\Gamma_b(X)_{|g}) & \longrightarrow & C^*(\Gamma_b(X)_{|f \cup g}) & \longrightarrow & C^*(\Gamma_b(X)_{|f}) \longrightarrow 0 \\ & & \uparrow i & & \uparrow & & \parallel \\ 0 & \longrightarrow & C^*(\Gamma_b(X)_{|U_g}) & \longrightarrow & C^*(\Gamma_b(X)_{|U_g \cup f}) & \longrightarrow & C^*(\Gamma_b(X)_{|f}) \longrightarrow 0 \end{array}$$

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

Lemma : (proof in progress)

The maps $K_*(i) : K_*(C^*(\Gamma_b(X)_{|U_g})) \longrightarrow K_*(C^*(\Gamma_b(X)_{|g}))$ are isomorphisms.

$$\begin{array}{ccccccc}
 0 & \longrightarrow & C^*(\Gamma_b(X)_{|g}) & \longrightarrow & C^*(\Gamma_b(X)_{|f \cup g}) & \longrightarrow & C^*(\Gamma_b(X)_{|f}) \longrightarrow 0 \\
 & & \uparrow i & & \uparrow & & \parallel \\
 0 & \longrightarrow & C^*(\Gamma_b(X)_{|U_g}) & \longrightarrow & C^*(\Gamma_b(X)_{|U_g \cup f}) & \longrightarrow & C^*(\Gamma_b(X)_{|f}) \longrightarrow 0 \\
 & & \parallel & & \parallel & & \parallel \\
 0 & \rightarrow & C^*(f \times f \times \underset{B}{\mathbb{R}^{+*2}} \times \mathbb{R}^{+*}) & \rightarrow & C^*(f \times f \times (\underset{B}{\mathbb{R}^+} \rtimes_1 \mathbb{R}^2)) & \rightarrow & C^*(f \times f \times \underset{B}{\mathbb{R}^{+*2}}) \rightarrow 0.
 \end{array}$$

α

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

Lemma : (proof in progress)

The maps $K_*(i) : K_*(C^*(\Gamma_b(X)_{|U_g})) \longrightarrow K_*(C^*(\Gamma_b(X)_{|g}))$ are isomorphisms.

$$\begin{array}{ccccccc}
 0 & \longrightarrow & C^*(\Gamma_b(X)_{|g}) & \longrightarrow & C^*(\Gamma_b(X)_{|f \cup g}) & \longrightarrow & C^*(\Gamma_b(X)_{|f}) \longrightarrow 0 \\
 & & \uparrow i & & \uparrow & & \parallel \\
 0 & \longrightarrow & C^*(\Gamma_b(X)_{|U_g}) & \longrightarrow & C^*(\Gamma_b(X)_{|U_g \cup f}) & \longrightarrow & C^*(\Gamma_b(X)_{|f}) \longrightarrow 0 \\
 & & \parallel & & \parallel & & \parallel \\
 0 & \rightarrow & C^*(f \times f \times \underset{B}{\mathbb{R}^{+*2}} \times \mathbb{R}^{+*}) & \rightarrow & C^*(f \times f \times \underset{B}{(\mathbb{R}^+ \rtimes_1 \mathbb{R}^2)}) & \rightarrow & C^*(f \times f \times \underset{B}{\mathbb{R}^{+*2}}) \rightarrow 0.
 \end{array}$$

α

Remark :

Because of $C^*(f \times f)$ nuclearity, it is enough to study the connection maps associated to

$$0 \longrightarrow C^*(\mathbb{R}^{+*2} \times \mathbb{R}^{+*}) \longrightarrow C^*(\mathbb{R}^+ \rtimes_1 \mathbb{R}^2) \longrightarrow C^*(\mathbb{R}^{+*2}) \longrightarrow 0.$$

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

To study K-theory of $C^*(\mathbb{R}^+ \rtimes_1 \mathbb{R}^2)$ we define $(\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2$ the groupoid associated to the action $(\mathbb{R}^+ \times [0, 1]) \curvearrowright \mathbb{R}^2$ defined by $(t, \varepsilon) * (\lambda_1, \lambda_2) := (t e^{\varepsilon \lambda_1}, \varepsilon)$.

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

To study K-theory of $C^*(\mathbb{R}^+ \rtimes_1 \mathbb{R}^2)$ we define $(\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2$ the groupoid associated to the action $(\mathbb{R}^+ \times [0, 1]) \curvearrowright \mathbb{R}^2$ defined by $(t, \varepsilon) * (\lambda_1, \lambda_2) := (t e^{\varepsilon \lambda_1}, \varepsilon)$.

Using 6-terms exact sequence associated to

$$0 \longrightarrow C^*((\mathbb{R}^+ \times]0, 1]) \rtimes \mathbb{R}^2) \longrightarrow C^*((\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2) \xrightarrow{ev_0} C^*(\mathbb{R}^+ \times \mathbb{R}^2) \longrightarrow 0$$

$$0 \longrightarrow C^*((\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2) \longrightarrow C^*((\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2) \xrightarrow{ev_1} C^*(\mathbb{R}^+ \rtimes_1 \mathbb{R}^2) \longrightarrow 0.$$

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

To study K-theory of $C^*(\mathbb{R}^+ \rtimes_1 \mathbb{R}^2)$ we define $(\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2$ the groupoid associated to the action $(\mathbb{R}^+ \times [0, 1]) \curvearrowright \mathbb{R}^2$ defined by $(t, \varepsilon) * (\lambda_1, \lambda_2) := (t e^{\varepsilon \lambda_1}, \varepsilon)$.

Using 6-terms exact sequence associated to

$$0 \longrightarrow C^*((\mathbb{R}^+ \times]0, 1]) \rtimes \mathbb{R}^2) \longrightarrow C^*((\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2) \xrightarrow{ev_0} C^*(\mathbb{R}^+ \times \mathbb{R}^2) \longrightarrow 0$$

$$0 \longrightarrow C^*((\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2) \longrightarrow C^*((\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2) \xrightarrow{ev_1} C^*(\mathbb{R}^+ \rtimes_1 \mathbb{R}^2) \longrightarrow 0.$$

we get :

$$\begin{array}{ccccc} K_*(C^*(\mathbb{R}^+ \times \mathbb{R}^2)) & \xleftarrow[\text{ev}_0]{\cong} & K_*(C^*((\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2)) & \xrightarrow[\text{ev}_1]{\cong} & K_*(C^*(\mathbb{R}^+ \rtimes_1 \mathbb{R}^2)) \\ \parallel & & & & \\ 0. & & & & \end{array}$$

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

To study K-theory of $C^*(\mathbb{R}^+ \rtimes_1 \mathbb{R}^2)$ we define $(\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2$ the groupoid associated to the action $(\mathbb{R}^+ \times [0, 1]) \curvearrowright \mathbb{R}^2$ defined by $(t, \varepsilon) * (\lambda_1, \lambda_2) := (t e^{\varepsilon \lambda_1}, \varepsilon)$.

Using 6-terms exact sequence associated to

$$0 \longrightarrow C^*((\mathbb{R}^+ \times]0, 1]) \rtimes \mathbb{R}^2) \longrightarrow C^*((\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2) \xrightarrow{ev_0} C^*(\mathbb{R}^+ \times \mathbb{R}^2) \longrightarrow 0$$

$$0 \longrightarrow C^*((\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2) \longrightarrow C^*((\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2) \xrightarrow{ev_1} C^*(\mathbb{R}^+ \rtimes_1 \mathbb{R}^2) \longrightarrow 0.$$

we get :

$$\begin{array}{ccccc} K_*(C^*(\mathbb{R}^+ \times \mathbb{R}^2)) & \xleftarrow[\text{ev}_0]{\cong} & K_*(C^*((\mathbb{R}^+ \times [0, 1]) \rtimes \mathbb{R}^2)) & \xrightarrow[\text{ev}_1]{\cong} & K_*(C^*(\mathbb{R}^+ \rtimes_1 \mathbb{R}^2)) \\ \parallel & & & & \\ 0. & & & & \end{array}$$

Then

$$0 \longrightarrow C^*(\mathbb{R}^{+*2} \times \mathbb{R}^{+*}) \longrightarrow C^*(\mathbb{R}^+ \rtimes_1 \mathbb{R}^2) \longrightarrow C^*(\mathbb{R}^{+*2}) \longrightarrow 0 .$$

$\underbrace{\hspace{10em}}_{\cong}$

Eventually, α is an isomorphism.

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

Index maps

$$\begin{array}{ccccc}
 K_0(C_0(B))^{\#\mathcal{F}_1} & \longrightarrow & K_1(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2})) & \longrightarrow & K_1(C_0(B))^{\#\mathcal{F}_2} \\
 \delta_0 \uparrow & & & & \downarrow \delta_1 \\
 K_0(C_0(B))^{\#\mathcal{F}_2} & \longleftarrow & K_0(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2})) & \longleftarrow & K_1(C_0(B))^{\#\mathcal{F}_1}
 \end{array}$$

we have :

$$\begin{aligned}
 \delta_i : \quad & K_i(C_0(B))^{\#\mathcal{F}_2} & \longrightarrow & K_i(C_0(B))^{\#\mathcal{F}_1} \\
 & (0, \dots, 0, \underbrace{b, \dots, 0, \dots, 0}_{f \text{ coordinate}}) & \mapsto & (0, \dots, 0, \underbrace{\alpha(b), \dots, -\alpha(b)}_{g \text{ coordinate}}, \underbrace{0, \dots, 0}_{g' \text{ coordinate}}).
 \end{aligned}$$

→ Coherent choice of signs ? Conormal homology.

Computation of $K_*(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$

Index maps

$$\begin{array}{ccccc} K_0(C_0(B))^{\#\mathcal{F}_1} & \longrightarrow & K_1(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2})) & \longrightarrow & K_1(C_0(B))^{\#\mathcal{F}_2} \\ \delta_0 \uparrow & & & & \downarrow \delta_1 \\ K_0(C_0(B))^{\#\mathcal{F}_2} & \longleftarrow & K_0(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2})) & \longleftarrow & K_1(C_0(B))^{\#\mathcal{F}_1} \end{array}$$

we have :

$$\delta_i : \begin{array}{ccc} K_i(C_0(B))^{\#\mathcal{F}_2} & \longrightarrow & K_i(C_0(B))^{\#\mathcal{F}_1} \\ (0, \dots, 0, \underbrace{b,}_{f \text{ coordinate}} 0, \dots, 0) & \mapsto & (0, \dots, 0, \underbrace{\alpha(b)}_{g \text{ coordinate}}, \dots, \underbrace{-\alpha(b)}_{g' \text{ coordinate}}, 0, \dots, 0). \end{array}$$

→ Coherent choice of signs ? Conormal homology.

Theorem

The obstruction $K_0(C^*(G_F)) = K_0(C^*(\Gamma_b(X)_{|\mathcal{F}_1 \cup \mathcal{F}_2}))$ fits in the short exact sequence :

$$0 \longrightarrow K_1(C_0(B))^{\#\mathcal{F}_1} / \text{Im } \delta_1 \longrightarrow K_0(C^*(G_F)) \longrightarrow \text{Ker } \delta_0 \longrightarrow 0.$$

Thank you

Thank you for your attention !