o
universite

PARIS-SACLAY

Autour de la dimension de Hausdorff

TER de Master 1 Mathématiques Fondamentales - Université Paris Saclay -
2020/2021

EVE MACHEFERTIP] - GAETAN DAMY[®)] - FLORIAN THIRY[®)]

(1). eve.machefert@Quniversite-paris-saclay.fr
(2). gaetan.damy@Quniversite-paris-saclay.fr
(3). florian.thiry@universite-paris-saclay.fr



Avant-propos

Ce document constitue le mémoire d'un projet de plusieurs semaines mené dans le cadre du
master 1 de mathématiques d’Orsay. Son but est la découverte et/ou I'approfondissement de no-
tions mathématiques a travers un sujet proche de la recherche en mathématiques, le tout étant
encadré par un enseignant-chercheur du département de mathématiques d’Orsay. Sur les traces de
notre encadrant, nous nous sommes donc intéressés a la dimension de Hausdorff.

Nous faisons tout d’abord un rappel sur la mesure de Hausdorff ainsi que la dimension de Haus-
dorff. Puis nous nous intéressons a des résultats de densité pour cette mesure. Ces résultats sont
analogues aux résultats de densité bien connus pour la mesure de Lebesgue. Nous allons d’abord
avoir besoin d’un théoréme de Vitali, que nous prouverons ainsi que quelques autres propriétés, qui
nous serons utiles pour étudier, par la suite ces théoréme de densités. Ensuite nous allons calculer
la dimension de Hausdorff du graphe de divers fonctions. Enfin nous étudierons le comportement
de la dimension de Hausdorff vis & vis des Ensembles de Besicovitch dont la mesure extérieure de
Lebesgue peut étre petite voire nulle.

Nous nous sommes largement appuyé sur 'ouvrage de Falconer The geometry of fractal sets
[2], mais également sur les notes de Hervé de Pajot pour la derniére partie.

Nous remercions tout particuliecrement M. Laurent Moonens, enseignant-chercheur a I'université
Paris-Saclay, pour son aide et ses conseils précieux durant 1’élaboration de ce mémoire.



Notations et conventions

Dans l'entiéreté de ce projet, nous adopterons les notations et conventions suivantes :

— On désignera par R le corps des réels.

— On désignera par N et Z respectivement I’ensemble des nombres entiers naturels et celui des
nombres entiers relatifs.

— On notera S" le cercle unité de R™ !,

— Etant donné f une fonction a valeurs réelles et un réel a, on notera {f < a} respectivement
{f > a} 'ensemble des points ot f est inférieure, respectivement supérieure a a.

— On désignera par B(z,r) la boule de centre x et de rayon r > 0.
— On désignera par Bf(z,r) la boule fermée de centre = et de rayon r > 0.
— On désignera par |U| le diamétre d’un ensemble U, i.e. |U| := sup{||lx — y|| : z,y € U}.

— On désignera par dist(z, F) la distance de z € R" a I'ensemble F C R", i.e.
dist(z, E) = in{J |z — vl
ye
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Chapitre 1

Rappel sur la dimension et la mesure de
Hausdorft

1.1 Mesure de Hausdorff

Nous allons commencer par introduire la notion de mesure de Hausdorff.

Définition 1.1. (Mesure de Hausdorff)

Soit A une partie d’un espace vectoriel normé X. Soient s > 0 et § > 0.
On définit une mesure extérieure H3(A) par :

Hi(A) = inf{z \Ui|* : AC UUi et|Us] < (5}’

iel iel
On définit alors la mesure de Hausdorff s-dimensionnelle de A par :

HE(A) = lim H3(A).

5—0+

Remarque 1.1. On peut, dans cette définition, prendre, sans perte de généralité, un recouvrement
(U;) avec U; conveze. En effet, si un U; n'est pas convere on peut alors considérer son enveloppe
conveze, dont le diamétre est le méme que celui de ’ensemble de départ. Ainsi en remplacant,
les ensembles du recouvrement par leur enveloppe convexe, on obtient un recouvrement de convexe
qui vérifie les mémes propriétés que le recouvrement initiale, vis a vis de la définition que nous
considérons.

Nous utiliserons donc, par la suite, notamment dans le chapitre 2, la définition analogue qui consi-
dere des recouvrements avec des convezes.



1.2 Dimension de Hausdorff

Il nous reste maintenant a définir la dimension de Hausdorff.

Définition 1.2. (Dimension de Hausdorff)

Soit A une partie d’un espace vectoriel normé X. Il existe un unique réel strictement positif d tel
que :

— pour tout a > d, on a H*(A) =0,
— pour tout 0 < b < d, on a H*(A) = +oo.
Ce nombre d est appelé la dimension de Hausdorff de A et on le note dim(A).

Mesure de Hausdorff de A

TN
—+oo

0 \ valeurs de s
Ve

FIGURE 1.1 — Schéma du comportement de la mesure de Hausdorff.

Remarque 1.2. Intuitivement, la mesure de Hausdorff 1-dimensionnelle permet de mesurer « la
longueur » d’un objet, la mesure de Hausdorff 2-dimensionnelle « son aire » et la mesure de Haus-
dorff 3-dimensionnelle sont « volume ». Cependant, certains objets peuvent avoir une dimension
de Hausdorff non entiére...

Proposition 1.1. Pour § > 0,s > 0,A C R" on définit H5(A) de la méme facon que H5(A)
excepté que l’on considére uniquement les recouvrements par des boules. On pose alors de méme

7—73(14) = 5lir£1+7-[§(14), et on définit ainsi diNm(A).

Alors dz'Nm(A) =dim(A).



Démonstration. Un recouvrement par des boules est en particulier un recouvrement. Donc H*(A) <

~

H?(A). Soit A C R™. Soit 6 > 0, posons (E;);>o un recouvrement de A par des ouverts de diameétres
inférieur a 6. Posons aussi (B;),>o tel que E; C B; := B(z;, |Ej|). Donc (B;) ;=0 est un recouvrement
de A par des boules de diamétre inférieur a 29. Donc,

35(A) <D IBIT =2 B
Jj=0 Jj=0
Cette inégalité étant vraie pour tout recouvrement (E;);so de A par des ouverts de diameétre
inférieur & §, on peut passer I'infimum en §. Donc H*(A) < 2°H*(A).
Ainsi,
H(A) < H(A) < 2°HP(A).

On conclut a 1’égalité des dimensions. O]



Chapitre 2

Propriétés de densité

2.1 Deéfinitions

Commengons par introduire les objets sur lesquels nous allons travailler.
Soit n € N. On travaille dans R".
Soit 0 < s < n.

Définition 2.1. Soit E un sous-ensemble de R".
On dit que E est un s-espace s’il est H*-mesurable et 0 < H*(E) < co.

Définition 2.2. Soient £ un s-espace et x € R".
La densité supérieure de E au point x est :

D’(E, x) = limsup HIEN Bf(x,r)).
r—0 <2T)S

De méme on définit également :

Définition 2.3. Soient E un s-espace et x € R".
La densité inférieure de E au point x est :

D?*(E,z) = liminf HHEN Bf(x,r)).
r—0 (2r)s

Définition 2.4. Soient E un s-espace et x € E.
On dit que = est un point régulier de E si D' (E,z) = D*(E,z) = 1.
Sinon on dit que x est un point irrégulier de E.

Définition 2.5. Soient E un s-espace.
On dit que E est régulier irrégulier si pour H®-presque tout x € E, x est réqulier irrégulier.
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Définition 2.6. Soient E un s-espace et x € R".
La densité convexe supérieure de E au point x est :

D.(E,z) = limsup

r—0

{HS(EOU)

U ,U conveze tel queazEUetO<|U\<r}.

2.2 Résultats préliminaires

Avant de démontrer les théorémes de densité, qui nous intéresse ici, il nous faut établir quelques
résultats.

Proposition 2.1. Soient E un s-espace et x € R", on a alors :

2_5ﬁz(E,$) < 5S(E,:17) < Ei(E,x).

Démonstration.

— On remarque que si on a un sous ensemble V C R" et zy € V, alors V' C By(xo, |V]).
Soit r > 0.
Donc, d’aprés cette remarque, si U est convexe et tel que x € U, 0 < |U| < r, alors
U C By(z,|UJ).
Et il vient donc :

HI(ENU) - H*(E N By(z, |U]))
ol U
SH(E N By(,|U]))
2lul)s
ooy BN Byl )
p<r (2p)

=2

Puis, par passage a la borne supérieure, on obtient :

sup {%S(E NnU)

L : U convexe tel que x € U et 0 < |U| < 7"} < 2°sup

Ainsi, par passage a la limite, il vient :

27°D.(E,z) < D'(E,z).



— On remarque que :
By(z,r) € {U convexe tel que x € U et 0 < |U| < 2r}.

Donc , par définition de la limite supérieure, on a bien :

D’(E,z) < D,(E,z).

Lemme 2.1. Soit E un s-espace.

1. Pour tout r > 0, x — H*(E N By(x,r)) est une fonction semi-continue supérieurement et
donc Borel-mesurable.

2. x— D' (E,z) et x + D*(E, x) sont des fonctions Borel-mesurables.

Démonstration.

1. On rappelle une caractérisation de la semi-continuité supérieure.
On dit que f est semi-continue supérieurement si et seulement si Voo € R, {x : f(z) > a} est
fermé.

Soit 7 > 0.

Soit o € R (ici on peut méme prendre o > 0 car on sait que H*(E) > 0).

On pose O :={z : H*(E N Bf(x,r)) < a}.

On veut montrer que O est ouvert.

Soit z € O.

On sait que By(z, r +¢) décroit vers By(x,r) quand e décroit vers 0, et comme H*(E) < oo,
(et donc que pour tout ¢ > 0, H*(E N By(x,r +¢)) < 00), et que donc E N By(z,r) est
I'intersection des £'N By(x,r +¢), de H*-mesures finies, on obtient que H*(E N By(x,r +¢))
décroit vers H*(E N By(x,7)).

Il existe donc € > 0 tel que H*(ENBy(x,r+¢)) < a (car x € O donc H*(ENBy(z,7)) < ).
Ainsi, si on prend y € R" tel que |z —y| < ¢ (i.e. y € By(x,¢)), alors, par inéga-
lité triangulaire, Bf(y,r) C Bf(x,r + €). Puis, par croissance de la mesure de Hausdorff,
H(ENBy(y,r)) < H(ENBy(z,r+¢)) < .

Donc, y € O i.e. Bf(x,e) C O, d’oit O est ouvert.

Puis R™\ O est fermé i.e., par la caractérisation rappelée, H*(E N By(x,r)) est une fonction
semi-continue supérieurement de x.

2. On rappelle que dire que f est Borel-mesurable équivaut a dire que : Voo € R, {z : f(z) < a}
est un borélien.
Soit a € R, comme précédemment on peut se restreindre a o > 0.
Soit r > 0.
On veut montrer que {z : D*(E,z) < a} est un borélien.
D’aprés 1., 'ensemble {z : H*(E'N By(x,r)) < a(2r)*} est ouvert.



Soit p > 0.

On pose F, := {x : H*(E N By(x,r)) < o(2r)° pour un r < p}. L’ensemble F, est ouvert,
comme union d’ouverts.

On a donc :

{z:D*(E,x) < a} = {a: : 1i£f1_)iglf HAE ?25];(1,7“)) < oz}

Cette égalité reste vraie si on prend l'intersection sur les p > 0 rationnels. L’intersection
devient alors dénombrable. L’ensemble {z : D*(E,z) < a} est donc un Gj (intersection
dénombrable d’ouverts), donc borélien.

D’on, x — D*(FE, x) est Borel-mesurable.

On procéde de fagon analogue pour montrer que x > ES(E ,x) est aussi Borel-mesurable.

]

Nous allons maintenant introduire une notion de recouvrement de Vitali pour la mesure de Haus-
dorff et un théoréme de Vitali, qui va nous étre utile par la suite. Il s’agit ici, non pas du théoréme
de Vitali classique, mais plutot d’une version intéressante par rapport a notre étude.

Lemme 2.2. Soit E un ensemble H*-mesurable tel que H*(F) < oo. Et soit € > 0.
Alors il existe p > 0 (qui ne dépend que de E et €) tel que pour toute suite de boréliens (U;)
vérifiant, pour tout i, 0 < |U;| < p, on ait :

H® (EmUUi) <) U +e.

Remarque 2.1. La démonstration de ce lemme s’appuie sur la définition de la mesure de Haus-
dorff, comme la limite quand § — 0 de Hj et la partition de E en E '\ U Uiet EN U Ui. Pour

plus de détails, voir la démonstration du lemme 1.7 (page 9) dans The geometry of fractal sets [Z].

Définition 2.7. On appelle recouvrement de Vitali de E, une famille V d’ensembles telle que
pour tout x € E et 0 > 0, il existe U € V tel que x € U et 0 < |U| < 0.

Théoréme 2.1. (Théoréeme de Vitali)

1. Soit E un sous-ensemble H®-mesurable de R™ et soit V un recouvrement de Vitali (de fermés)
de F.
Alors il eziste une suite finie ou dénombrable d’ensembles disjoints (U;) de V telle qu’on ait

soit Z \Ui|* = oo soit H(E'\ UU,) =0.



2. St de plus H*(E) < oo, alors pour € > 0 fizé, on a également :

H(E) <) U +e.
Démonstration.

1. Soit p > 0.
On peut supposer que |U| < p, VU € V.
On fait un raisonnement par induction pour trouver la suite des (U;).
Soit U; € V quelconque.
On suppose avoir choisi Uy, ..., U, € V.
On note d,,, = sup{|U| : U € V tel qu'il vérifie U N U; = @,V1 < i < m}.

— Si d,, = 0 alors, comme par définition d’un recouvrement de Vitali, VU € V, |U| > 0, il
vient : {|U|: U € Vtel que UN U; = &,V1 < i < m} = &. Donc pour tout U € V, il
existe 1 <i<mtel que UNU; # .

Soit x € E.

Soit k € N, on pose ¢ :=27% > 0.

Alors, il existe un U € V tel que x € U et 0 < |U| < 6 (U dépend donc de k).

Ainsi, par ce qui précéde, il existe 1 < i, < m tel que U NU;, # @. 1l existe donc
x, € UNU, et alors |v — x| < 277 (car z et x;, appartiennent a U, qui vérifie
Ul <6=27"%).

On choisit alors 1 < ¢ < m tel que {k € N : 4, = i} soit infini. On numérote alors ces

indices {k;,! € N}. Et ainsi, on obtient xzy, — x (car k; —— +00, et cela vient du
l—+o00 l—+o00

fait qu’on a pris 'ensemble {k € N : 4, = ¢} infini). Or, pour tout [ € N, on a xy, € U;
(par définition des k;). Donc par fermeture de Uy, il vient finalement = € U.
Dou E C | JUs.

i=1

Donc E\OUi:Q.

=1

On obtient donc bien ”HS(E\U U;) = 0. Et on a une suite finie donc la somme Z |U;|?
i=1 i=1
est bien finie.

m
1
— Sinon, on prend U,,1; € V un ensemble disjoint de U U; tel que |Uyyaq| > §dm > 0.
i=1
Si le processus continue indéfiniment (i.e. on a jamais d,, = 0), on suppose

Ui < oo

On veut maintenant montrer que, dans ce cas, H*(FE \ U U;) = 0.

7
On pose, Vi, B; = By(z;, 3|U;|), avec x; € U; choisi arbitrairement.
On va tout d’abord montrer que Vk > 1 :

k 0o
E\N[Juic | B
=1

i=k+1

10



k
Sier\UUi, alors il existe U € V tel que UNU; =@, V1 <i< ket z €U (car V
i=1
est un recouvrement de Vitali et car d,,, > 0). Comme |U;] — 0 (car Z |Ui|° < o0),
on obtient pour un m assez grand, |U| > 2|U,,|.
Or, par hypothese, le processus de sélection des U; continue indéfiniment, donc il existe
E<j<mtelqueUNU; # @ (carsiVl < j <m—1, UNU; = @, on aurait
|U| < dip—1 < 2|Up|, ce qui est contradictoire avec ce que I'on vient de voir sur U donc
on a forcément j < k). Et alors |U| < sup{|V|:V € Vtel que VNU; = &,V1 < i <
J =1} =dj1 <2\Uj],
Alors, il existe y; € U; NU, donc pour z € U on a

d(z,r;) < d(x,y;) + d(y;, 7;)

< |UJ+ U
< 2|05 + (U
<3|

Ainsi z € Bj, d’ou Bj = Bf(l’],3|U]’) O U.
D’ou l'inclusion souhaitée.

H; (E\DUZ) <H;

=1

i=k+1
o
< Y IB
i=k+1
o0
- 65 E ‘Ul‘s
i=k+1
oo
Or, par hypothése la série est convergente, donc la somme des reste E \U;|* tend vers
i=k+1

0 quand k£ — +o0.

Donc : pour tout § > 0 H3 (E \ U Ui> =0.

Et ainsi on trouve bien H* <E \ U Ui) =0.

On a alors montré le premier point du théoréme.

2. On prend le p correspondant a € dans le lemme [2.2]
Si Z |U;|* = oo alors il n’y a rien a faire.
Sinon, par le 1. et le lemme [2.2) on obtient :

Ho(E) = H* <E\UUZ-> e (EmUUi) <SPt e

11



2.3 Théorémes de densité et corollaires

Théoréme 2.2. St E est un s-espace alors EE(E, x) =0 pour H’-presque tout x ¢ E.

Démonstration.

Soit a > 0.

On veut montrer que 'ensemble F := {z ¢ E : D.(E,z) > a} est de mesure nulle.

On sait que E est H*-mesurable et que H*(E) < oo, car c’est un s-espace, il vient donc, par
régularité de la mesure H*®, que pour tout § > 0, il existe £y C E fermé tel que H*(F \ E;) < 6.
Soit p > 0.

On définit V, := {U : U fermé et convexe tel que 0 < |U| < p,UNEy =@ et H*(ENU) > o|U|*}.
Montrons que V, est un recouvrement de Vitali par des fermés de F'.

— Si U €V, alors, par définition, 0 < |U|.
— Soit x € F, alors = ¢ F et D.(E,x) > a.
Alors x ¢ Ey, donc dist(z, Ey) > 0.
Soit 6 > 0.
Par définition,

H(ENU)

Ei(E,x):lir%sup{ 7 , U convexe tel que x € U et 0 < |U]| <r} > .
r— S

Dong, il existe e < min(p,d, dist(x, E7)) et U convexe, que 'on peut supposer fermé sans
H(ENU)

1%
Or, comme & < min(p,d, dist(x, £7)) < dist(z, Ey), il vient : U N E; = &, et puisque
e < min(p, d, dist(z, £1)) < p, on a bien obtenu U € V,. Ainsi, x € U pour un U € V), tel
que |U] <e <6.

perte de généralité, et tel que x € U et 0 < |U| < € avec

Donc V, est un recouvrement de Vitali par des fermés de F'.

On peut donc appliquer le théoréme de Vitali (théoréme 1)) : il existe (U;) C V suite finie ou
dénombrable d’ensembles disjoints tels que soit Z |U;i|® = oo soit H(F'\ U U;) =0.

1 1
Or U; ,d Ul < =H*(ENU;). Ainsi, Ul < — (ENU;), et 1 bl
r U; € V, donc |U;] ozH ( ). Ainsi Z| | o ZH ( ), et comme les ensembles

sont disjoints, il vient par o-additivité de la mesure :
LS weEnu) = 2w al Ju)
o Y - v
Et puisque U; N Fy = &, Vi il vient :

1 1 )
ZH(E V< —H(E\ E) < —.
—H( mLiJU» —H B\ By) < —

12



)
D’ou, Z \Ui|* < — < o0.
o

On a donc : H*(F'\ U U;) = 0.
On en déduit alors :

H(F) < Hy(F\|JU) + Hy(F o Uh)
<SH(F\Ju)+D (vl
> Uil

)
D’ou finalement, H*(F) < —.
«
Puis, comme § > 0 est arbitraire (et p > 0 aussi), on en déduit : H*(F') = 0.

Théoréme 2.3. Si E est un s-espace alors ﬁi(E, x) = 1 pour H*-presque tout x € E.

Démonstration.

1. Montrons que D.(E,x) > 1 pour H*-presque tout # € F, en utilisant la définition de la
mesure de Hausdorff.

Soit « < 1et p >0,
On pose :

F:={z e E:H(ENU) < a|U|® pour tout U convexe tel que x € U et |U| < p}

S(ENU
:{xEE:sup{%: pour tout U convexe tel que z € U et |U]| gp} ga}.

Montrons qu’alors F' est H’-mesurable.
S

On note ¢, (x) := sup {%‘TU)

(On peut prendre U ouvert dans la définition de D.(F,z) sans perte de généralité.)

On a donc F = EN ¢, (] — oo;al).

Il suffit donc de montrer que ¢, est H*-mesurable, car alors F' sera l'intersection de deux

ensembles H’-mesurables donc sera lui-méme H’-mesurable.

Montrons donc que ¢, est H*-mesurable, pour cela on va montrer que I’ensemble ¢ * (]a, +oc])

est ouvert quel que soit a > 0.

Soit a > 0, et soit x € o, *(Ja, +0o]).

Par définition de ¢,, en tant que borne supérieure, on sait qu’il existe un U ouvert convexe

H(UNE)

190
Or pour tout y € U, on sait donc qu'il existe un U’ (en fait U lui-méme) ouvert convexe non
vide tel que x € U et 0 < |U| < r. Et alors, par définition de ¢, comme borne supérieure,

: U ouvert convexe tel que z € U et 0 < |U| < T}.

non vide tel que x € U et 0 < |U| < r qui vérifie :

13



s E
on obtient ¢, (y) > % > a.

Donc finalement, y € ¢, (]a, +0c[). Donc U C ¢, (]a, +oc[) et ainsi on a bien montré que
80;1(]% +00[) est ouvert.

Soit € > 0.
On a alors un recouvrement de F' par des convexes (U;) tels que |U;| < p et

Z |U;|* < H*(F) + ¢ (cf remarque .

Alors, si on suppose, sans perte de généralité, que Vi, U; N F' # &, on obtient :
H(F) <Y H(FNTy)

S H(ENU)

> aluif?

a Uil

&(HS(F) +¢)

<1

< oM (F) +e.

VAN

N

NN

Ainsi en faisant tendre v et € vers 0, on obtient : H*(F) =0.
Comme ceci est vrai pour tout p > 0, il vient par définition de D.(E, ) :

H:({z € E: D.(E,z) < a}) =0.

Do : D (E, x) > o pour H*-presque tout = € E. B
Puisqu’on a le résultat pour tout @ < 1, on peut conclure que Di(E ,x) = 1 pour H*-presque
tout x € E.

. Montrons que Ei(E ,x) < 1 pour H*-presque tout z € F, en utilisant le théoréme de Vitali

(théoréme [2.1).

Soit o > 1.

On pose F := {x € E: D,(F,z) > a}.

L’ensemble F est H*-mesurable (preuve analogue a la mesurabilité de F' du point de la dé-
monstration qui précéde).

On pose Fy:={z € F: D,(E\ F,z) = 0}.
L’ensemble F'\ F' est H*-mesurable car E et F le sont. De plus, comme F est un s-espace on
sait aussi que H*(E \ F) < co. On distingue, maintenant, deux cas :
— SiH(E\F)=0.
Alors, par la définition de D.(F \ F,z), il vient que, pour tout 3, D.(E \ F,y) = 0.
De cela, on déduit que F' = Fy, puis donc que H*(F'\ Fp) = 0.
— On suppose maintenant que 0 < H*(E \ F).
Alors, E'\ F est un s-espace, on peut donc appliquer le théoréme : pour H°-presque
tout = ¢ F\ F, D,(E\ F,z) = 0. Donc pour H*-presque tout z € F, on a
D.(E\ F,z) = 0. Ainsi pour H*-presque tout z € F, x € F. D’ou, H*(F \ Fy) = 0.
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Soit € > 0.
Par sous-additivité de la mesure extérieure, on a, en outre, pour tout » > 0 et pour tout U

convexe tel que x € U et 0 < |U| < min(r,e), H*(ENU) < H (E\F)NU)+H(FNU).
Si x € Fy, il vient donc par définition de la densité convexe :

Di(F.2) > Di(E,x) — Dy(E\ F.a) = Di(E.) > a.

On pose maintenant : V := {U : U fermé convexe tel que H*(FNU) > «a|U|*}.
Par I'inégalité qui précede et comme € est arbitraire, il vient que V est un recouvrement de
Vitali de Fj .

Ainsi, d’apreés le théoréme de Vitali 2)), comme H°(Fy) < oo (car Fy C F C E donc
H(Fo) < H(F) < HY(F) < o0), on a pour tout ¢ > 0, l'existence d'une suite (U;) d’en-
sembles disjoints de V tels que :

He(Fp) <) U +e.

Puis, comme H*(F'\ Fy) = 0, on obtient :

Comme on a cela pour £ > 0 arbitraire et a > 1 , on obtient bien H*(F') = 0.

Corollaire 2.1. Si E est un s-espace, alors D*(E,x) = 0 pour H*-presque tout x ¢ E.

Démonstration. Soit F un s-espace. -
D’aprés le théoréme , pour H°-presque tout = ¢ F, Dz(E, x) = 0. Et par la proposition , on
a:2°D.(E,z) <D (E,z) < D.(E,z).

1l vient donc que D’ (E, z) = 0, pour H*-presque tout z ¢ E.
Puis, par propriété des limites supérieures et inférieures, il vient pour H*-presque tout = ¢ E :

0 < D*(E,z)D’(E,z) = 0.

D'ou, D*(FE,x) = 0, pour H*-presque tout x ¢ E.
D’ou finalement, D*(F,x) = 0 pour H*-presque tout = ¢ F. ]
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Corollaire 2.2. Si E est un s-espace, alors pour H®-presque tout x € E, on a :

27 <D (E,x) < 1.

Démonstration. Soit E un s-espace. o
D’aprés le théoréme , pour H*-presque tout x € F, Dz(E, x) = 1. Et en vertu de la proposition
, on obtient bien : 27° < DS(E,.CE) <1 O

Corollaire 2.3. Soient E' un s-espace et F' un sous-ensemble H*-mesurable de L.
Alors, D*(F,xz) = D*(E, x) et D°(F,z) = D" (E, x) pour H*-presque tout x € F.

Démonstration. On note H := E '\ F.
D’aprés le corollaire , D?(H,z) = 0 pour presque tout x ¢ H et donc pour presque tout x € F.
On a donc, pour presque tout x € F' :

D*(E,x) = D*(F,z) + D*(H,z) = D*(F, ),

et de méme : o o o
D’(E,z) =D’ (F,z) + D*(H,z) = D’(F, z).

Corollaire 2.4. Soit E = UEj une union dénombrable de s-espaces disjoints avec H*(FE) < oo.
J

Alors, Yk, D*(Ey,z) = D*(E,z) et D' (Ey,x) = D (E, x) pour H*-presque tout x € Ej,.

Démonstration. Cela vient directement du corollaire [2.3] que l'on applique & chacun des Fy. [

Corollaire 2.5. Soit ' un s-espace.
St E est régulier irrégulier alors tout sous-ensemble H’-mesurable de E de mesure positive est
réqulier irréqulier.

Démonstration. On suppose E est régulier irrégulier.

Soit F' un sous-ensemble H*-mesurable de £ de mesure positive (comme H*(F) < H*(E) < oo, F
est bien un s-espace, donc dire que F' est régulier a bien un sens, en vertu de la définition .
Alors par le corollaire pour H*-presque tout € F, D°(F,z) = D*(E,x) et

D’(F,z) = D°(E, ).

Or E est supposé régulier irrégulier, donc pour H*-presque tout x € F,

D*(E,z) =D’ (E,z) = 1= 0.
D’ot, pour H’-presque tout = € F, D*(F,x) = ES(F, x) =1=0, i.e. F est régulier irrégulier. [
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Corollaire 2.6.

1. L’intersection d’un ensemble régulier irrégulier avec un ensemble H*-mesurable est un espace
régulier irrégulier.

2. L’intersection d’un ensemble régulier et d’un ensemble irrégulier est de mesure nulle.

Démonstration.

1. L’intersection d'un ensemble régulier irrégulier avec un ensemble H*-mesurable est un sous
ensemble H*-mesurable d’'un ensemble régulier donc par le corollaire [2.5] il est aussi régulier.

2. Un ensemble régulier irrégulier est H*-mesurable.
Or par le point précédent, l'intersection d’'un H°-mesurable et d’un régulier irrégulier est
régulier irrégulier.
Donc l'intersection E' d'un ensemble régulier avec un ensemble irrégulier est régulier et ir-
régulier en méme temps. On a alors que pour H*-presque tout = € E, D*(E,x) = 1 et
D?(E,x) =0, ce qui implique forcément que H*(FE) = 0.

]

Corollaire 2.7. (Théoréme de décomposition)
Si E est un s-espace, l’ensemble des points réquliers irréguliers de E est régulier irrégulier.

Démonstration. Par le lemme [2.1] Pensemble des points réguliers irréguliers est un ensemble H°-
mesurable (comme l'intersection de I'image réciproque du borélien {1} {0} par la fonction bo-
rélienne x — D*(F,x) avec l'image réciproque du borélien {1} {0} par la fonction borélienne
z— D°(E,x)).

Puis, par le corollaire [2.6, on obtient que les points réguliers irréguliers de F sont réguliers irré-
guliers dans F'. Ainsi, par définition d’ensemble régulier irrégulier, il vient que ces ensembles sont
respectivement régulier et irrégulier.

]
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Chapitre 3

Dimension de Hausdorff du graphe de
diverses fonctions

Dans ce chapitre, nous allons travailler dans le plan R? pour étudier la dimension de Hausdorff de
I' défini par :

I':={(z, f(z)) |z € [0,1]},
ou f est une fonction définie sur 'intervalle [0, 1]. L’ensemble I' est appelé le graphe de la fonction

f.

3.1 Cas ou f est a variation bornée

Définition 3.1. (Fonction a variation bornée)
On dit que ¢ : [0,1] — R? est a variation bornée sur [0,1] s’il existe K > 0 tel que :

i ’@b(zi) - w(xi—l)’ <K,

pour toute subdivision 0 = xg < 1 < -+ < x,, = 1.
On définit A := ([0, 1]). Dans ce cas, on définit la longueur de A par :

L(A) = sup{z ‘@/J(xl) —@/)(xi_l)‘ 0=y <z1 < - <Tp = 1},

ou 0=z < x1 < -+ <Xy, = 1, représente une subdivision quelconque de [0, 1].

Dans cette partie, nous allons calculer la dimension de Hausdorff du graphe d’une fonction a
variation bornée. Pour cela, nous avons au préalable besoin de plusieurs lemmes.

Lemme 3.1. Soient E et F' deux parties d’espaces vectoriels X etY (normés par|.|) ety : E — F
une application surjective telle que :

3C >0, Vo,y € B, [v(z) —v(y)| < Clz -yl
Alors :
H(F) < C°H(E).
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Démonstration. Montrons que pour tout U C X, on a : [¢(UNE)| < C|U|.

(U N E)| :=sup{la—p] : a,f € p(UNE)}
=sup{[¢(z) —¥(y)| : z,y e UNE}
< Csup{lz —y| : 2,y cUNE}
< Csup{lz—vy| : z,y e U}
= C|U].
Donc si (U;)ier est un é-recouvrement de E, c’est-a-dire que : £ C UUZ' et |U;| <9, (Vi € 1),

iel
alors, comme v est surjective, on a : F' C ¢(E), d’ou :

Fcy(B) c| JvWinE),

et pour chaque 7 € I :
lW(U; N E)| < C6.

Donc (¥(U; N E));er est un Co-recouvrement de F.
De plus,

Hes(F) <D [p(UiNE) < C* ) U,

i€l i€l

donc en passant a I'infimum sur tous les recouvrements de F, il vient :
Hes(F) < CHG(E).
En passant & la limite § — 07, il vient :

HE(F) < CSH ().

Dans le second lemme, nous avons besoin de définir la notion de courbe :

Définition 3.2. (Courbe)
On dit que A est une courbe s’il existe une paramétrisation de A notée v : [a,b] — R*® qui est
continue et injective.

Lemme 3.2. Si A est une courbe, alors H'(A) = L(A).

Démonstration. Notons z et w les deux points délimitant les extrémités de la courbe A. On note Py
la projection orthogonale de R? sur la droite d passant par z et w. On sait que P, est 1-lipschitzienne
donc :

’Pd(x) - Pd(y)| < |':E - y|> V$7y € RQ'
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L’application de projection est surjective, donc on peut utiliser le lemme [3.1}, ainsi :
HU(A) > H (Pu(A))
= L([z, w])
= |z —w|.

Maintenant on suppose que A est paramétrisée par ¢ : [0,1] — R2. D’aprés le calcul précédent,
on remarque que pour tout ¢t,u € [0,1] :

H ([t ul) = [v(t) — P(u)].

Soit 0 =ty < t; < --- < t,, = 1, une subdivision quelconque de [0, 1], alors :

m

D () = e(tio)] < ZHl(Tﬂ([chti]))

i=1
= HI(A)7

puisque les arcs ([t;_1,t;]) de A sont disjoints sauf pour les extrémités. Donc £(A) < H(A).

Il reste & montrer 'autre inégalité. Si £L(A) = +o0, la partie précédente montre que H*'(A) = +o0.

On peut donc supposer que £(A) < +o0. Soit o une paramétrisation par longueur d’arc|'”’|de A.
La fonction o est surjective de [0, L(A)] vers A. De plus, pour tout 0 < t; <ty < L(A), on a:

lo(t1) —o(t2)] < (ta —t1).
En effet, ts — t; = L(o([0,12])) — L(o([0.41])) et L(o([0,ts])) = L(o([0,11])) + L(([tr, ta])). On

trouve ainsi :
ta =ty = L(o([t1,12]))
> |o(tz) — o(t1)],
car t; < to est une subdivision particuliere de [t1, to].
On peut donc appliquer le lemme pour affirmer que :

HI(A) =H (o([0, L(A)]) < H([0, L(A)]) = L(A).

On peut donc conclure cette partie avec le théoréme suivant :

Théoréme 3.1. Si f : [0,1] — R est une fonction continue et a variation bornée, alors dim(I') =
1, ou I' représente le graphe de f.

Démonstration. On définit F : [0,1] — R? par F(t) := (¢, f(t)) pour tout ¢ € [0,1]. Comme
f est continue et & variation bornée, on en déduit que F' est également continue et & variation
bornée. On en déduit ainsi que L£(A) < +o00. Le lemme montre que H'(A) = L(A), donc
0 < H'(A) =H'T) < 400, donc dim(T") = 1. O

Cependant, si f est suffisamment irréguliére (méme en restant continue), il est possible que I'
ait une dimension de Hausdorff supérieure & 1. Dans de tels cas, il peut étre difficile de calculer
la dimension de Hausdorff de I' & partir de la simple connaissance de f. Nous allons donc étudier
quelques cas particuliers.

(1). voir Introduction & la géométrie de Pascal Dupont (De Boeck, Bruxelles, 2002)
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3.2 Condition de Holder

Théoréme 3.2. Soient s > 1 et f : [0,1] — R telle que :
Jhg,c>0, Vo €[0,1], VO< h < hg, |f(z+h)— f(x)] < ch®%,
ot l'on a prolongé la fonction f par f(1) pour x > 1. Alors :

H(T) < +o0.

Remarque 3.1. La condition sur f du théoréme ci-dessus est appelée condition de Holder. Elle
permet d’obtenir une borne supérieure sur la dimension de Hausdorff de I'.

Démonstration. Soit I un intervalle sur I’axe des abscisses de longueur h < hg. Par définition,

|f(D)] =sup{|f(y) — f(x)] : v,y € T}.

Mais f est continue donc d’aprés le théoréme des valeurs intermédiaires, f(I) est un intervalle
donc :

L)) =f(D)] < ch*.

Ainsi Pensemble {(z, f(z)) : = € I} peut étre recouvert par m := |h~'ch®* *| + 1 carrés de coté h,
notés C pour 1 < i < m. On effectue ensuite une subdivision réguliére de [0, 1] en m parties égales

1

de longueur h = — < hy. Il s’agit d’une subdivision particuliére de [0, 1]. De plus, le diamétre
m

des carrés CY (pour 1 < i < m) de taille h est égal a V2h (d’aprés le théoréme de Pythagore) et

I'c U U C!. Donc par définition de I'infimum, il vient :
Ieri=1

<Z<Z|cf Y0k 1)

Iel =1
< m(V2h)*(h~tch** 4+ 1)
= m2°/%ch + mQS/QhS
1
23/2 ch 23/2h3
e Ty
= css/z(l +cthi )
< 282,
pour h suffisamment petit car s > 1.

Donc H:5, (I') < ¢2'%/2 pour h petit. On peut donc faire tendre h vers 07 dans linégalité

précédente pour avoir :
H(T) < c2M9/2 < oo
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3.3 Fonctions a fortes oscillations

Un moyen naturel d’obtenir une fonction dont le graphe a une structure plus fine est d’additionner
une suite de fonctions qui oscillent de plus en plus rapidement. Ainsi si (a;);en+ est une suite
sommable et si (\;);en+ est une suite qui tend vers +oo, alors la fonction ¢ définie par une série

trigonométrique
+oo

o(z) = Zai sin(\z), Ve e R

i=1
pourrait avoir un graphe de dimension de Hausdorff supérieure a 1 si on choisit attentivement les
a; et les A\; pour ¢ € N*. Nous allons introduire la fonction de Weierstrass.

Définition 3.3. (Fonction de Weierstrass)
Soient 1 < s <2 et A > 1. Pour tout x € R on définit W par :

400
W(x) := Z A= gin(Xig).
i=1

Remarque 3.2. Cette fonction est continue partout mais dérivable nulle part. Un récent artz’cle
datant du 11 octobre 2017, a réussi a montrer que la dimension de son graphe vaut exactement s.
Une variante de la fonction de Weierstrass est la fonction :

hw)i= 30 AL = cos(Va)),

1=—00

introduite par Mandelbrot en 1977.

Proposition 3.1. Pour tout x € R,
h(Ar) = A\*"*h(z).

Démonstration.

h(Az) = D A2 (1 — cos(X (M)

1=—00

+o0
= Z AE=28(1 — cos(A L))

1=—00

+o0
= Z AE=DED (] cos(Nr))

= \2"*h(2).
O

(2). voir Hausdorff dimension of the graphs of the classical Weierstrass functions - Mathematische Zeitschrift
volume 289, pages 223-266 (2018) de Weixiao Shen
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A nouveau la dimension du graphe de h est s. En 1980, Berry et Lewis ont réalisé des simulations
numériques de ces fonctions pour des applications physiques. Pour faciliter le calcul, il est pratique
de remplacer les fonctions sinus par des fonctions périodiques légérement différentes :

Définition 3.4. (La fonction "Zig-Zag")
On définit la fonction g sur R par :

Y s10<y<1,
g4k +y)=¢ 2—y sil<y<3,
y—4 s13<y<A4,

pour k € Z et y € [0,4[. Cette fonction est donc 4-périodique par définition.

100 — g

FIGURE 3.1 — Graphe de la fonction g sur [0, 12].

Remarque 3.3. On remarque que pour tout v € R —7Z, on a |¢'(x)| =1 et pour tout v € R, on a
lg(x)| < 1. Afin de présenter une preuve complete et raisonnable, nous allons étudier les fonctions :

—+00

f(z) = Z a; g(\iw),

i=1

a la place des fonctions précédentes.

En 1937, Besicovitch et Ursell ont trouvé la dimension de Hausdorft de la fonction précédente.
Ce résultat est résumé dans le théoréme suivant :

(3). voir Sets of fractional dimension (V) : On dimensional numbers of some continuous curves, J. London Math.

Soc. 12(1937), 18-25 de Besicovitch et Ursell
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Théoréme 3.3. Soit (\;);en+ une suite de nombres positifs vérifiant les propriétés suivantes :
o <>\i+1
Ai
A
L 4o,
/\i 1—+00

o log(N)
log(A;) i—+oo

) est croissante,
iEN*

et soit I' le graphe de la fonction f définie par

—+00

fla) =Y X2g(\a),

i=1

pour x € [0,1] et 1 < s < 2.
(

1
Alors dim(T") =
Pour démontrer ce théoréme, nous avons besoin de plusieurs résultats :

Lemme 3.3. [ existe N € N tel que pour tout k > N, on a :

k
STt
=1
et

Z AT <on?
i=k+1

avec les \; et le s défini dans 'énoncé du théoréeme|[3.3

s 1

Démonstration. Nous allons tout d’abord démontrer la premiére inégalité. Comme ( ;\H) —
i

Ait1

s—1
400, il existe k; € N tel que pour tout ¢ > kq, on a ( ) > 3. Ainsi pour k; < j < k, il vient

i
par récurrence immeédiate /\;’T_1 < 3k=d /\2_1. On a donc :

k k1—1
Z)\Zsl 12:)\3 1+Z3k z)\sl
=1 - i=k1 -
=) NN Y 3
k1_1 "
< Z )\s 1 )\s 1 -
k1—1 3

_Z/\sl )\sl
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En divisant I'inégalité précédente par Ai~' # 0, il vient :

k s—1 k1—1 ys—1
TN . A 3 3
SN SN s,

Il existe donc ky € N tel que pour tout & > ko, on a :

k
doxt<anh
=1

Nous allons maintenant montrer la deuxiéme inégalité du lemme. Comme s — 2 < 0, on a

A1) 52 . . . A1) 572 ...
< ;1) — 0, et il existe k3 € N tel que pour tout ¢+ > k3, on a < ;1) < B% Ainsi
7 1\ ?

—Jj
pour k3 < j < i, il vient par récurrence immédiate \:7* < <§> )\;’7_1. On a donc pour tout
k Z kg .

400 1

e i—k—1
SoaTENE Y (5) =

i=k+1 i=k+1

11 suffit donc de poser N := max(kq, k3) pour avoir les deux inégalités souhaitées. O

Remarque 3.4. Il est intéressant de remarquer que la mesure de Lebesque dans R* du graphe
d’une fonction est toujours nulle. Ce qui n’est pas toujours le cas pour la mesure s-dimensionnelle
de Hausdorff (pour 1 < s <2).

Proposition 3.2. Soit I C R un intervalle quelconque et soit g : I — R une fonction mesurable.
Notons T le graphe de g. Alors L*(T') = 0.

Démonstration. On applique le théoréme de Fubini pour avoir :

om) = [ o= fan | L de.
R2 R {z€R: (z,y)el'}

Mais I'ensemble {y € R : (z,y) € I'} posséde au plus un seul élément, donc il est en particulier
de mesure nulle. Donc l'intégrale correspondante est nulle également. Ainsi £*(T") = 0. O]

Lemme 3.4. Soient 0 <t <s eta>0. Alors :

)\](CS—H)/Q k=400

et
6ak

—_ —
ey

avec les \; et le s défini dans 'énoncé du théoréme 3.3
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Démonstration. Nous allons commencer par déterminer la premiére limite. On considére des quan-
tités strictement positives donc on peut passer au logarithme :

At
log <ﬁ) = tlog(Aet1) —
k

s+t

log(A)

log(Ak-i-l) ) /\7];—’_1
- 1 h heése. — . | B
car log () o L par ypothese. Comme t—s < 0, on en déduit que log Afj“m T o0
)\t

k+1 0
)\I(:th)/z kot oo

donc

Nous allons maintenant déterminer la seconde limite. Par hypothése, — 400 et comme

)\k’—l k—+o0

_ AL\ (57072
i > 0, on a i — +oo. Ainsi il existe N € N tel que pour tout & > N, on a
2 )\kfl k——+oo

A (s=t)/2 . .
( ) i > > 7. Par récurrence immédiate, il vient )\,(f RIES 7“’“)\5 92 Donc
k-1

6ak: 6ak
(s—t)/2 < ak ) (5—1)/2
Al 7ak \{

B (6)ak 1
7 )\gs—t)/Z

— 0.
k——+oo

Lemme 3.5. Soit k € N* avec k > N, ot N est donné dans le lemme . On pose h := )\,:1. Soit
S un carré de coté h paralléle aux azes des coordonnées. On note I l'intervalle de projection de S
sur l'aze des abscisses. On pose pour tout x € [0,1] :

k

fr(@) =Y X 2g(N),

=1

ot les \;, le s et la fonction g sont définis dans le théoréme . Alors f;, change de signe au plus
une fois sur l’intervalle I.

Démonstration. Par définition de la fonction g, on a :

1 siyelJJal— 1,41 +1],
IEZ

—1 siye|JJal+ 1,4+ 3]
€L

J(y) =
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En séparant la somme partielle de f en deux parties, on obtient :

k—1

fel@) = N 2g(x) + N 2g(Nia).

i=1
Posons pour tout z € R, ¢x(z) := A\j 2g(A\xx). On a alors :

41
N osize —+ A (L€,

AOES S
-7 six €

+Jk(l EZ),
k

1 1 2 .
ott Jy == | — —,—|. Pour tout x € j— + J (avec j € Z), on a : ¢j(z) = (—=1)’\{"". Par

1
hypothése, on a |I| = h = \;! = §|Jk| Il existe donc au plus deux entiers consécutifs que l'on

note j et j + 1 tels que :
2 2
IC|j—+J 4+ 1)— + Ji ).
< (ig+an)U (005 +a)
2 , 2
On pose I} ;= j—+ Jpet I, := (j + 1))\— + Ji. On a alors :
k

Ak
o (z) = (=1)7xt sur I,
(=177 sur L.

[¢]
Ainsi sur I;, on a :
k—1

) = (DA YN ().
=1

On observe que :

k—1 k—1
S| < S
=1 =1

() <227
<X
ou () provient directement du lemme [3.3] Ce résultat est valable pour k£ > N donné par le lemme
2.0l

On a donc sur ]O 1, le fait que :
signe(f{(x)) = signe((~1)%).

[¢]

De méme sur I, on a : '
signe(fi(x)) = signe((—1)"").
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Nous allons maintenant démontrer le théoréme [3.3]

Démonstration. ( Théoréme

[Etape 1 : Montrons que H*(I') < +o00.]
Soit k € N*. On choisit h tel que : A, < h < A, (possible car la suite (
Alors :

)\i+1

) est croissante).
i %

+oo +o0

D oA gl +h) =Y N g

=1 =1

<Z)\S 2lg\i(x + h)) — g(\iz)]

[f(z+h) = f(z)] =

—~ ZAS lgNi(a + h)) — g(Nix))|

+Z|g (z+h)) — g(Nz))|

i= k+1

+oo
< Z/\S lg(hila + h) — gz)[ +2 > A2

i=k+1

+oo
%) < Z NN+ k) = N 2 ) A
‘ i=k+1

_hZAS 112 Z As2

i=k+1
(%) < 2h/\s Ay,

pour k suffisamment grand, o (%) est conséquence de l'inégalité des accroissements finis pour les
fonctions lipschitziennes et (x) provient directement du lemme
On suppose donc k assez grand (ainsi h va étre petit). Par deﬁmtlon de h, on a )\kil <h< )\,;1,

k+17

donc :
NG = ()\1;11)278 < h?* car 2 —s >0,
et )
M=) <A, car 1 -5 <.
Ainsi :
|f(z+h) — f(z)| < 2hh* ™ +4h**
Y
= 6h* ",

Pour tout k¥ > N (N défini dans le lemme et pour tout h réel avec )‘lc+1 <h<A'ona
|f(z+h)— f(x)| < 6h>*. Il existe donc hy > O tel que pour tout h < hg, on a |f(x+h) — f(x)| <
6h*~% et d’aprés le théoréme , on en déduit que H*(I') < +oo.

[Etape 2 : Montrons que pour tout 0 < ¢ < s, on a 0 < H'(T").]
Cette étape nécessite davantage de travail. Soit S un carré, avec des cotés de longueur h > 0,
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paralleéle aux axes des coordonnées. Soit [ 'intervalle de projection de S sur I'axe des abscisses.
D’apreés la proposition [3.2] la mesure de Lebesgue de ’ensemble

E:={zreR : (z f(z)) € S} CR,

est nulle. On définit les sommes partielles

k

(@) ==Y X 2g(Niw),

=1

pour tout x € R.
s
Comme la suite <l—+1> tend vers +o0o, on peut supposer que 'on dispose d'un k suffisamment
7

grand afin d’avoir les inégalités 2 < 2\ < Agy1. Dans ce cas, pour tout z € R :

—+o00

Z X729 (\)

1=k+1

+oo
()<Y AT
i=k+1

(+4) < 2072,

|f(z) = fu(z)| =

(3.1)

ou () provient du fait que |g| < 1 et (x*) du lemme . De plus, pour tout x € R ou f; est

dérivable, on a :
k

D AT ()

=1

|fi(x)| =

k—1 9
>N =) o (3.2)

i=1
1 s—1
Z §Ak )
d’aprés le lemme et par le fait que |¢'| < 1.
Supposons tout d’abord que le carré S a un cété h := /\;1. Soit m € N* tel que :

N2 <hi=MN <N L (3.3)

Il est important de noter que m dépend de k par définition. On observe que trouver un tel m est

A A\
possible car la suite ( ZH) tend vers +o0 et s — 2 < 0. Comme la suite < ZH) est croissante,
on a : Ai /i \ \ e

Vie[l,m—1], 2 < ZE
Ak Aktio1
Donc, comme les \; sont positifs, il vient :
~1 —1
g )\k+1 < g )\kJrz
plelil 7 Akl
c’est-a-dire : ,
A1\ T Akt
( > )\k < /\k:
)\k =1 )\kJrzfl



Comme 2 — s > 0, on obtient :
<)\k+1>(m_l)(2_s)/\2—s - (>\k+m—1 >\k+1)\k>2_s

Ak Nk+m—2 Ak
- Aiifn_l
< )\ka
car \;' < A;.2. ;. On obtient finalement :
A (m—1)(2—s)
(22) < M
Ak
=\t

A A2\ 5~
:<A,:1”'f> !

A (k—1)(s—1)
< ( k:+1> )\i—17
Y

Ait1
Ai
allons ainsi montrer qu’il existe une constante a > 0 (indépendante de k) telle que m < ak. On

rappelle que m dépend de k par construction. On obtient :

par croissance de la suite ( ) En passant au logarithme dans l'inégalité précédente, nous
7

(m —1)(2 — s) log A;“ < (k—1)(s—1) log A;“ +log (A1),
k k

On réordonne 'inégalité précédente pour obtenir :
m<s—1+ 3—2s log(/\i_l)
- — - Y )
ko 2—s k(2—2s) k(2 — ) log( k+1)
Ak
En passant a la limite & — +o00, les deux derniers termes du membre de droite de l'inégalité
précédente tendent vers 0, donc :

li < — 1
1m—
kstoo bk — 2—5

m
Donc la suite <?> est bornée par une constante indépendante de k.
k

[Cas 1:m =1]
D’apres (3.1), si (x, f(x)) € S alors (, fy(x)) € Ry, ot Ry est le rectangle obtenu en rajoutant
une longueur 2)\2121 < 2h en haut et en bas de S. D’apreés le lemme , /1. change de signe au plus
une fois sur /, donc le graphe de f; ne peut pas sortir du carré S plus d’une fois. D’aprés (3.2]),

1
sur chaque intervalle ou f; est de signe constant, on a : |f}.(z)| > 5)\2_1.

Ainsi (z, fx(x)) € Ry pour x dans un intervalle de longueur au plus = 2\, ¢ fois la hauteur

T__

2

de R;. En effet, soit J C I un intervalle tel que pour tout = € J, on a (z, fy(z)) € Ry, alors :
hauteur(R;) > | fr(max(J)) — fr(min(J)]|

/\fk

>|J| AS L
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Donc |J| < hauteur(R;) 2\, . De plus,
hauteur(R;) = h + 2(2)\;7]) < h+4h = 5h.

Et comme il y a au plus deux intervalles J vérifiant les propriétés précédentes, on en déduit que :

L(E) < 2(5h) (A1)

=207\, "

=20).°

= 20h°.

[Cas 2 : m > 1]
On peut diviser I en au plus deux intervalles J; et Jo, ou f] est de signe constant sur J; et sur
Jo. D’apres , la hauteur de Ry est : h + 2(2)\2121) < 5)\2121. Donc sur chaque intervalle J;
(i € {0,1}), on considere les sous intervalles K; définis par K; := proj o, (F) N J;. Pour i € {0,1},
on a :
Kl = 20502

On divise chaque K; (i € {0,1}) en plusieurs parties ot f; ., est de signe constant sur chacune de

ces parties. On obtient au plus (2X; 5)\2121) 2 oL + 1 nouveaux intervalles au sein de chaque
k+1

K; (i € {0,1}). En effet, le terme correspond a l'inverse de la période de la fonction

-1
k+1

x +— g(Ar+17). On observe que :
1

AN 5

A1 +1=5N"A ] +1

)\k+1 s—1
= 1
5 ( ~ ) n

[Cas 3 : m > 2]
On répéte le processus sur chacun des intervalles précédents. D’aprés ce qui précéde, il y aura

au plus 6 <
Ak+1
processus m — 2 fois, on remarque que ’ensemble E est recouvert par au plus :

9. gm-1 ()‘kJrl Akt2 )\k+m1)51 —9.gm! ()‘k+m1)81
Ak Akl Akgpm—2 Ak ’

Aky2

s—1
) nouveaux intervalles sur lesquels f;,, est de signe constant. En répétant ce

intervalles sur lesquels f;,,,_; est de signe constant. D’apreés (3.1)), (z, f(z)) € Slorsque (z, friym-1(2)) €
Ry, o Ry est le rectangle formé en augmentant S d’une longueur 2/\21371 au dessus et en dessous.
On utilise (3.3) pour affirmer que : hauteur(Ry) = h + 2(2X;;2)) < 5h. Ainsi :

A . s—1
LY(E)<2-6m7" (%) (2A435m—1) 5,

car chaque intervalle (lors de la derniére étape) a une longueur plus petite que 2)\,1;5”_1 fois la
hauteur de R,. Ce résultat se démontre d’'une maniere analogue au cas 1. On trouve ainsi :
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A - s—1
LY(E)<2-6m" (—’“;k 1) 5 2\ 0

=20-6""'\"*h
=20 6™ NN
=20-6""'h°

<20 - 6%,

puisque 'on a m — 1 < m < ak. Soit 0 < t < s, on suppose maintenant que )\,;11 < h < )\,;1.
Ainsi :

)\t 6(1]{2
1 aky—s —t k+1
L (E) < 206 >‘k =20 >\k+1 /\(s—|—t)/2 )\(S—t)/Q'
k k

On applique le lemme qui assure que les deux facteurs a droite tendent vers 0, donc il existe
C1 > 0 tel que £'(E) < C, ()\,;il)t, pour k assez grand. Et comme )\,;il <h <Al vient

LYE) < Ch. (3.4)

Soit (U;)ien un o-recouvrement quelconque de I', avec § > 0 assez petit. Pour tout ¢ € N, on choisit
un carré Si tel que :

— U; € 5,

— S; a ses cotés de longueur |U;],

— 5; est paralléle aux axes de coordonnées.

— fpours=1.2 3
12 1

10 A1 Q/\')
0.8 1 /\6’4

0.6 1

W%

OA
02(
0.0

FIGURE 3.2 — Recouvrement du graphique de la fonction f avec les carrés pour s = 1.2.

Ll L ] L] L )

0.0 0.2 04 0.6 0.8 10

(4). voir schéma explicatif

32



Soit 0 <t < s,on a:

+o0 “+o0o
DUl =) (Vs
=0 =0

ou on définit pour tout ¢ € N, I'ensemble E; := {z : (z, f(x)) € S;}. D’apreés la formule (3.4]) avec
h = (V2)71Sj| et E = E; (pour chaque i € N), il vient :

Y=Y 5L

>O > 0,

car [0,1] U E;, donc Zﬁl ) > L£'([0,1]) = 1. Finalement, en passant a l'infimum sur tous

les o- recouvrements de F, 11 vient H5(T') > C; > 0. Et comme § > 0 est arbitraire, il vient donc
Ce résultat combiné au résultat de I’étape 1 montre ainsi que dim(I') = s. O

Pour conclure ce chapitre, nous allons afficher le graphe I' de la fonction f étudiée dans le théoréme
précédent pour différente valeurs de s. Le résultat obtenu est cohérent avec le théoréme !

121 — fpours=1.01

10 1

08 1

06 1

0.4 1

02 1

00 1

00 02 0.4 06 0.8 10

FIGURE 3.3 — Graphe de la fonction f pour s = 1.01.
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— f pours=1.5
150 4
125
100
075 4

050 A

025 1

000

00 02 o4 e LR 10

FIGURE 3.4 — Graphe de la fonction f pour s = 1.5.

5 -
4 -
2 -
,D -
_2 g
= {pour s=199
_4 T 1 T T 1 T
00 02 04 06 08 140

FIGURE 3.5 — Graphe de la fonction f pour s = 1.99.
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Chapitre 4

Autour de la conjecture de Kakeya

Dans le présent chapitre nous allons nous attacher a décrire des ensembles intéressants a ’aide
de la mesure de Hausdorff. Cela pouvant donner un apercu du comportement de cet outil vis & vis
d’une classe de parties de mesure extérieure de Lebesgue potentiellement petite, voire nulle.

L’histoire de ces ensembles est liée a deux mathématiciens principalement : le Russe Abram
Besicovitch, et le Japonais Soichi Kakeya; il n’est donc pas étonnant qu’ils aient laissé leurs noms
a la plupart des objets qui vont étre ici en jeu, cela méme lorsqu’ils n’en sont pas vraiment a
’origine.

Tout commence en 1917 [8] avec une question de M. Kakeya : 7 A quel point peut-on minimiser
I’aire balayée par une aiguille lors d’une rotation de 180°7 ”. Mathématiquement le probléme
devient : "Quelle est la mesure de Lebesgue minimale possible pour une partie de R? contenant un
segment de longueur unité dans chaque direction? ”. La réponse sera apportée par Besicovitch en
1928 [8], cette aire peut étre prise aussi petite que désirée, et méme, nulle. Ici nous ne détaillerons
pas la construction de tels ensembles, celle-ci étant détaillée en plusieurs endroits tels que 2] ou
[8] o il est fait usage des arbres de Perron.

Depuis, le probléme s’est considérablement généralisé, donnant lieu a de nouvelles questions.
Désormais on ne se limite plus a des parties de R? mais bien de R", et plus & de "simples"
segments, mais bien & des sous espaces vectoriels quelconques. En ce qui nous concerne, nous
allons bien observer des parties de R", mais nous allons nous contenter des segments unité.

Définition 4.1. (Ensemble de Besicovitch)
Nous appellerons Ensemble de Besicovitch de R"™, toute partie de R™ contenant un segment unité
fermé dans chaque direction de S™*.

Le contexte étant posé, nous allons nous intéresser a la conjecture suivante :

Conjecture 4.1. (De Kakeya)
Tout ensemble de Besicovitch de R"™ est de dimension de Hausdorff égale a n.

Remarque 4.1. Cette derniere a été démontrée comme vraie pour n = 2 en 1971, pour n > 2
elle reste non résolue a ce jour. Une résolution possible repose sur une préconjecture, la conjecture
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de la fonction mazimale de Kakeya, elle aussi démontrée pour n = 2 uniquement, et impliquant la
conjecture de Kakeya.

Dans la suite nous nous proposons de démontrer quelques résultats élémentaires de la théorie
des fonctions mazimales, puis d’introduire la conjecture de la fonction mazimale de Kakeya, dé-
montrer qu’elle implique bien la conjecture de Kakeya, et finalement utiliser cette implication pour
démontrer le cas n = 2.

4.1 Préliminaires sur les fonctions maximales

Dans cette section nous allons devoir passer par plusieurs résultats de recouvrement pour en
arriver aux fonctions maximales. Nous nous plagons dans (R, ||.||2) muni de la mesure de Lebesgue
car il s’agit du cadre de la conjecture de Kakeya, mais nous faisons remarquer au lecteur que les
résultats évoqués, ainsi que les raisonnements utilisés restent valables dans un espace métrique
muni d’une mesure doublante.

Nous commencons par trois lemmes fideles a 'intuition qui nous permettrons d’aboutir a un
théoréme de recouvrement dit "5R”.

Si B désigne une boule de R™ (ouverte ou fermé), r(B) désignera son rayon. Lorsqu’une collec-
tion de boules sera choisie, ses éléments seront supposés toutes ouvertes sans que ’on soit amené a
le préciser, mais les résultats restent valables pour les boules fermées en passant d’inégalité stricte
a large.

Lemme 4.1. Soit B une collection de boules deux a deux disjointes, de réunion bornée, et telle
que ligngr(B) > 0. Alors B est de cardinal fini.
€

Démonstration. Supposons que B soit un ensemble infini. On construit alors (Bj)rso une suite
d’éléments de B deux a deux distincts. Posons (xy)r=o la suite des centres de ces boules, indicées
de méme. Enfin notons 4 := jiBn%r(B) > 0.

€

Remarquons alors que l'on a ||x; — x| > 6 dés que j est différent de k. En effet, dans le cas
contraire on aurait |[z; — zxl| < § < r(B;) et donc zp € B; et ainsi x, € B;j N B, = (. Cela
étant, (xy)k>o ne peut admettre de valeur d’adhérence, ce qui contredit le théoréme de Bolzano
Weierstrass, cette suite étant bornée. L]

Lemme 4.2. Soit B une collection de boules, E une partie de R"™, R un réel strictement positif.
Supposons enfin que Ei}n%r(B) > 0. Alors il existe B C B fini, constitué de boules deuxr a deux
€

disjointes, disjointes de E, contenues dans B(0, R), et qui soit mazimale pour ces propriétés.

Démonstration. Si B =0, B' = () convient. Sinon on itére le processus suivant :
Tant qu’il reste dans B un élément disjoint de E , disjoint des éléments de B', et inclus dans
B(0, R), on lajoute a B'.
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On construit ainsi un ensemble au plus dénombrable de boules, en effet lors du processus on
peut associer chaque boule a un entier. Mais cet ensemble vérifie le lemme précédent, il est donc
fini. La construction de B’ s’étant arrétée par manque de candidat, B’ est maximale puisque sinon
cela reviendrait & trouver un nouvel élément dans B, disjoint de E et des éléments de B'. O

Lemme 4.3. Soit B une collection de boules, E une partie de R", supposons que én%r(B) > 0.
€

Alors il existe B' C B au plus dénombrable constitué de boules deuzx a deux disjointes, disjointes
de E, et qui soit maximal pour ces propriétés.

Démonstration. Si B =0, B = () convient. Sinon on procéde par récurrence.

D’abord par le lemme précédent on construit B C B famille finie maximale de boules deux a
deux disjointes, disjointes de F, incluses dans B(0, 1).

Si By, ..., By ont été construit, toujours par le lemme précédent, alors on construit B, C B
maximal, dont les éléments sont inclus dans B(O,2k+1), deux a deux disjoints et disjoints de
I'ensemble E U (UB)) U --- U (UBy).

Les collections (By)r=o étant construites, on pose B’ = UgsoB). L'ensemble B’ est au plus
dénombrable, ses éléments sont deux a deux disjoints, disjoints de E par construction. L’ensemble
B’ est aussi maximale pour les propriétés citées car sinon on aurait B” C B tel que B’ C B” ou
B vérifie les propriétés voulues. On pourrait alors fixer B € B” \ B, puis poser k € N tel que
B C B(0,2%). Observons alors la collection B, U {B}. Ses éléments sont inclus dans B(0,2"), ne
s'intersectent pas, n’intersectent pas E par définition de By, et B”. Cela contredit la maximalité de
B, ]

Passons maintenant au théoréme de recouvrement. Si B est une boule, nous désignerons par
5B la boule de méme centre que B telle que r(5B) = 5r(B).

Théoréme 4.1. (dit Vitali 5R)

Soit B une famille de boules non dégénérées tel que sup r(B) est fini. Alors il existe B C B au plus
BeB
dénombrable, constitué de boules deux a deux disjointes telle que :

UBclsB

BeB Bep’

Démonstration. Si B = 0, B’ = () convient. Sinon posons M := supr(B), ainsi M €]0, +oo[. On
BeB

M M
peut alors écrire B = UgsoBy avec By = {B eB:r(B) e } e ?] }

A nouveau construisons par récurrence.

Par le dernier lemme, on construit Bj C By au plus dénombrable, maximale, a ¢léments disjoints
deux a deux.

Si By, ..., B, sont construits, via le lemme précédent on construit By, ; C By maximale, au
plus dénombrable, & éléments deux a deux disjoints ainsi que disjoints des éléments de Ufzij, et
donc aussi de U?ZOB;.

On pose alors B' = UgoB),, ce dernier est au plus dénombrable.
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Les éléments de B’ sont deux a deux disjoints, en effet : soit By, B, éléments distincts de B,
soit j,1 € N tel que By € Bj et By € B}. Si j = [, les éléments de B; = B; sont disjoints deux a
deux par définition, donc By N By = (). Si j > [, par définition les éléments de B;- sont disjoints de
ceux de Ui;BB;, et donc en particulier By N By = ().

Si Be B', BC 5B donc B':= B convient. Si B ¢ B', alors : Vk € N, B ¢ B,.. En particulier il
existe k tel que B € By, et B ¢ B;.. B, étant maximale, on a que les éléments de B;, U { B} ne sont
pas deux a deux disjoints, ou bien que ces derniers ne sont pas disjoints de ceux de U?;&B}.

Ainsi : 3B’ € Uj_Bj telle que BN B' = .

En vue d’obtenir I'inclusion B C 5B’, commencons par comparer les rayons de ces boules. Soit

M 1M
j € [0,k] tel que B’ C By C B;. Alors r(B') > —= > ~—. Or B € By, donc r(B) <

— = . alnsi :
2]+1 2 2k

?7

Passons finalement & I'inclusion : soit x € B, b le centre de B, b’ celui de B’, soit y € BN B,
on a :

lz = V|| <llz = bl +[[b—yl + ly = V| < r(B) +r(B) +r(B) < 5r(B).
Donc z € 5B’, d’ou le résultat. ]

Ce théoréme de recouvrement va s’avérer utile pour la prochaine démonstration. Ne tardons pas
d’avantages et rentrons plus avant dans le sujet.

Pour A C R" mesurable de mesure extérieure de Lebesgue |A| et f une fonction de R™ d’inté-

grale définie sur A, nous noterons désormais ][ f(z)dz = A f(z)dz.
A A

Définition 4.2. Soit f : R" — R localement intégrable. La fonction :

Mf: R* —  RU{+oo}

T osup /1,
r>0 B(q;ﬂ“)

est appelée fonction maximale de Hardy-Littlewood de f.

Les deux propriétés phares de l'opérateur M sont la continuité L' — L}aible? et la continuité
LP — LP pour p > 1. Nous commencons par la premiére, la seconde s’en déduira.

Suivant le contexte, le symbole |.| désignera des valeurs absolues ou la mesure extérieure de
Lebesgue.
Théoréme 4.2. (Continuité L' — Ly, de M)

Je> 0, Vf € LNRY), YA >0, |[{z € R" : Mf(z) > \}| < §\|f|\1.
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Démonstration. Soit f € L'(R™) et A > 0.
Commengons par remarquer que pour tout z de R” on a :

1 1
< 55— | =55/ /I =0
fB(w,r) | B, )| Jrn |B(O,7)] Jon ™ rroc

Ainsi on peut poser R > 0 tel que pour tout z de R", tout r > R, ][ If] <A
B(z,r)
Posons E := {x € R" : M f(z) > A} et utilisons R pour estimer |E|. Par définition de M f et

de E,Vx € £, Ir, > 0, |f| > A. Mais donc par définition de R, r, < R pour tout z de E.
B(z,rg)
On pose alors B := {B(z,r,) : € E} recouvrement de E avec donc supr(B) = supr, < R. On

BeB zel
a

VBEB,]{B|f\>)\. (+)

Par théoréme de recouvrement il existe B C B au plus dénombrable tel que UgcgB C Upep'bB.
Finalement, puisque £ C UgepB C Upepd5B, on est conduit & 'estimation :

Ussl< X lsal=5" > 1Bl <5 > 5 [ 1< [ 11,

BeB’ Bep' BeB’ Bep' "

|E| <

la derniére inégalité venant du caractére disjoint des éléments de B'.
c
Ainsi [{x € R": M f(x) > A\}| < XHfHLl(R“% avec ¢ = 5", O

Remarque 4.2. Cette inégalité fait beaucoup penser a l'inégalité de Markov, mais ne nous y
trompons pas, la démonstration de cette derniére demanderait & ce que M f soit L', ce qui n'est
pas le cas en général.

De cette premiére inégalité nous déduisons la continuité LP? — L” de 'opérateur M pour p > 1.

Théoréme 4.3. (Continuité LF — L”)
vp €1, +ocl, 3C, > 0, [Mfll, < Gpl| fll,-

La démonstration qui suit est inspirée de celle de [4].

Démonstration. Pour simplifier les notations, nous noterons dans cette démonstration, pour tout
f:Q CR" — R mesurable :

Ar i ]0, 400 — R U {400}
t = HzeQ:|f(x)] >t}

Soit p > 1 et f € LP(R"). Commencons par une majoration de Ay r, nous en déduirons le
résultat voulu.

Soit ¢ > 0, posons g; := ly>ey f et hy := f — g, Ainsi f = g, + h;. L'opérateur M est sous
additif puisque la valeur absolue l'est, ainsi :
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Vz>0, {xeR":|Mf(x)] >z} {x € R": [M(g; + hy)(x)] > 2}

C {reR": [Ma(z)| + [Mhy(z)| > 2}
C {zeR":|Mg(x)| > z/2}U{z € R" : [Mhy(x)| > z/2}.

Donc,
V> 0, Aars(2) < Murne(2/2) + Mg (2/2) (+)

Or g; € L'(R") et hy € LPT(R"), en effet :

ol = f<( 11")’“( f”)k 1> 817 1l
L= < ([ )(f ) < o,

1 1 .
avee = 1=+ et [{f] >t} fmi car /13> [ 17p = 21(A1> 1}
p p {If1>t}

Et,

p+1 p
f
[omp= [ g [ e (M) < [ e (WY <k [ =y
" {IfI<t} {IfI<t} {If1<t} R

De cet état de fait découle une majoration sur Ay, et une sur Ayp,, on aura donc bien une
majoration de Ay s via (). La premiére est directe, pour la seconde nous tacherons d’étre astucieux.
La continuité L' — L}aible s’applique & ¢;, donc on a ¢ > 0 indépendant de ¢ et g; tel que :

&
V2 >0, Mg (2) < ;Hgt||1-

. . . . . . 1
Pour la seconde majoration nous n’allons pas appliquer directement ce méme argument a kY,
remarquons plutot que nous avons l'inclusion :

{x € R": Mhy(x) > 2} C {z € R": M(|h|P™) > 2PT1},

pour tout z > 0. En effet, si Mhi(x) > z, alors pour tout r > 0,

1—_1 1 1
+1 +1 +1
][ |ht| < |B(:E,7”)|_1 (/ 1) P (/ |ht|p+1)p _ (][ |ht|p+1>p
B(z,r) B(z,r) B(z,r) B(z,r)

Donc en passant & la puissance p 4+ 1 puis au supremum en r, on a (Mhy)P*(z) < M(hPT)(2),
done M (R (z) > 2P,

On applique alors la croissance de la mesure de Lebesgue a cette inclusion puis finalement la
continuité L' — L}aible de h?*! il existe donc b > 0 tel que pour tout z > 0 :

n n b
Mun (2) = [{x € R™ : Mhy(x) > 2} < [{z € R" : M(|h|P™) () > 22T} < sy | B[P

Posons d := br+T pour simplifier les écritures.

L’inégalité (*) ainsi que les deux derniéres majoration permettent d’avoir, pour tout z > 0 :

(2d)P+1

o+l

Iellia

2c
)‘Mf<z) < ;HgtHl + p+1-
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L’inégalité est en particulier vraie pour z = ¢t > 0, mais ¢ ayant été choisi arbitrairement, on a

donc :
(2d)P*

Sl ||hf| -

p+1

2c
Ve >0, Ap(t) < —llaellh +

d’ott 'on va pouvoir déduire notre résultat en estimant | M f||) comme suit :

|M f(x
IMflE = / M f(2)Pda / / ' 1at da
R™ n
= // 7 gy gy (8 2)dt d
nJ0o

—+00
— p/ =t (/R 1{|Mf(x)|>t}(t,:v)d:v> dt
0 n

o0
= p/ P N\ () dt
0 e Yoo
2cp tp_2||gt||1 dt + 2rtigrtly t_2||ht||p+1 dt.
p+1
0 0

On calcule alors ces deux termes de sorte a faire apparaitre || f|[?.

+o0o +00
/ tp_2||gt||1 dt = / / P2 |1{|f x)|>t}(t x)dx dt
0 n

_ / )|/ 21y (G 2)di de

(@)
= /|f \/ tP=2dt dx

1
= /RTV(?UW " (x)|da
Ritp
= pTleHZ

N

Et de méme :
—+o0

+o0o
/0 2 h e = / / 21 F ()1 ) oy (1 )
0 n

+o0o
= /]R |f(x)|p+1/ t_21{t;|f(x)|}(t,$)dt dx

0+001
- / )P / Lt de
n (@) T

_ p+1 1
= | 1@ o™
— iife.

On a donc finalement ’égalité :
p
HMng < (261: + 2p+1dp+1p) Hf”]]z7

telle que voulue. O

41



4.2 Conjecture de la fonction maximale de Kakeya

La fonction maximale de Kakeya d'une fonction de L; (R™) fait penser aux fonctions maximales de
Hardy-Littlewood en le fait qu’il s’agit d’'une moyenne par l'intégrale volumique. Cependant, ici les
moyennes ne plus prises sur des boules mais des cylindres, et ’on n’observe plus le supremum sur
les tailles de boules centrées en un point voulu, mais le supremum sur tous les translatés d’un méme
cylindre dont I'orientation constitue le paramétre d’entrée de la fonction maximale de Kakeya.

Notation 4.1. Soitv e S™™', § >0, a € R".

1
On note T (a) := {x eR": [{(x —a,v)| < 3 (x —a)*

< 5} le cylindre de direction v, hauteur

1, largeur 6.
Avec ztv =1 — (z,v)v le projeté orthogonal de z sur R™™* parallelement a v.

0.2

20
-06 -04 -0.2 0 0.2 04 0.6

FIGURE 4.1 — Ty (0) dans R?

Définition 4.3. Soit f € L, .(R") et § > 0. La fonction mazimale de Kakeya de f pour § est
définie par :
;o st — R

v — sup][ |f(z)] dx.
T3 (a)

acR™
La conjecture naive de la fonction de maximale de Kakeya s’énonce alors comme suit :
Conjecture 4.2.
1 n * Ca
dp > 1,Ve > 0,3C. > 0,Vf € L, (R"),V6 > 0, || f5 || r(sn—1) < ?||f||p.

Remarque 4.3. Nous parlons ici de conjecture naive car un contre exemple permet d’exclure
directement tous les réels p < n. Il s’agit de la fonction f = 1p(s/2).-
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Théoréme 4.4. La conjecture ci-dessus est fausse lorsque p < n.

Démonstration. Soit p > 1. Nous noterons wy la mesure de Lebesgue k-dimensionnelle de la boule
unité de R¥, et a; la mesure de (k — 1)-dimensionnelle de la sphére unité de R”.

La mesure des cylindres T (a) ne dépend que de §. Pour la déterminer on peut se contenter de
celle de T 31(0) ol e; est un élément de la base canonique de R". Il s’agit d’intégrer la mesure des

1
sections du cylindre sur sa hauteur, c’est a dire ici de —5 0,... ,0) a (5, 0,...,0 . Ces sections

sont toutes des translations du projeté orthogonal du cylindre sur Vect(es, ..., e,) parallelement
a ey. Le projeté étant défini comme l'ensemble des points z tels que ||z|| < § & savoir la boule de
R"! de centre 0 et de rayon ¢ ayant donc pour mesure 6" ‘w,_;. Ainsi :

1/2

IT%(a)| = |77 (0)| = / T L
~1/2

Ce prélude notationnel et calculatoire terminé, revenons en a la contradiction de notre inégalité.
Soit § > 0 assez petit, disons § < 1. Posons f = 1p(os/2). Alors on a I'inclusion B(0,5/2) C
T°(0) pour tout v € S"*. En effet, si z € B(0,6/2) on a :

i1

(o)l <lzlllol <5 <5 et lla ] =llz = (e v)ol < el + =] lv]* < 6.

Par conséquent, pour tout v € S* !, on a :

fi(v) = sup ][ Lp(0,6/2) () dx
a€R™ J T3 (a)
|B(0,2)NT2(0)]
1 T2(0)]

_ B, 3)]

72(0)]

(6/2)"wn
- 5n—1wn_1

1 w,

= J.

2n Wn—-1

1
1 w i g I w v
N pinty > — "5 d = ———daj.
175 1| o1y (/Sn_l (ann_l ) ‘7(“)) 2w g

S\Ip [/om\»
I =[5 (0.5)] = (5)

La conjecture impliquerait donc :

=

Et donc :

D’autre part :

1 no\»
vg>o,308>o,v5>o,—“’"5<% L
2”wn,1 0
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C’est a dire :

n
Ce qui est exclu dés lors que 1 +¢ — — < 0, c’est a dire p < oz
€

p
Le réel € étant arbitraire, la conjecture est donc impossible pour p < n. ]

Ceci étant, cela nous améne a la conjecture de la fonction maximale de Kakeya telle qu’elle est
posée généralement.

Conjecture 4.3. Fonction mazimale de Kakeya

* C€
Ve > 0,3C. > 0,Yf € L, (R"),V0 > 0, || f5 || zngn-1) < ¥||f||n.

4.3 Lien avec la conjecture de Kakeya

Sans plus attendre nous allons démontrer que la conjecture de la fonction maximale de Kakeya,
méme dans sa forme naive, entraine la conjecture de Kakeya.

Théoréme 4.5. Si pour tout € >0, on a C. > 0 tel que Vf € Lj,.(R™), V6 > 0,

loc

. C
15 r@ny < <21 f 1l

alors tout ensemble de Besicovitch de R"™ est de dimension de Hausdorff égale a n.

Démonstration. Soit E un ensemble de Besicovitch. Soit s < n, montrons que H*(E) = sup Hy(E) #
d>0

1

0. Fixons donc d > 0 assez petit, par exemple d < —. Soit enfin UjenB; un d — recouvrement
de E que l'on peut supposer constitué de boules ouvertes d’aprés proposition Pour j € N,
B; = B(zj,r;) avec r; < 5

L’objectif étant de trouver une constante ¢ > 0, indépendante du d — recouvrement, telle que
dorize
jEN

Pour ce faire commencons par regrouper les boules par rayons similaires, on pose pour tout

1 1
kEeN:J, = {j eN:r; € [?’W{}’ ainsi que Gy = U, B;.

Pour v € S"!, E contient au moins un segment unité de direction v, notons I,, un tel segment.
On peut alors opérer un tri des directions v suivant le groupement de boules rencontrant I,,. En
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d
effet, on pose pour k € N* : S}, := {v e S, NG| > =

k }, ou |.| désigne la mesure extérieure

de Lebesgue 1-dimensionnelle sur la droite I,,.
On a bien I'égalité Upen-S, = S" !, puisque sinon, ayant I’égalité :

1=|L] < |Uen (L NG| < D L NGy,

keN*

d
— pour tout k£ € N*, et donc

existence d'un v dans S" '\ Upen- Sy entrainerait |1, N G| < 12

Z |1, UGy < Z ; ce qui impliquerait :

keN* kEN*

d 172
1<Z’[vUGk’<Zﬁ<§E<1-

keN* keN*

Fixons v € S"'. On peut donc poser k tel que v € Si. Posons aussi f = 1p, ot Fj, =
Ujes, B(z;,10r;). Nous allons tacher de minorer f, ., et d’utiliser la conjecture de la fonction

maximale de Kakeya afin d’obtenir la minoration de Z r; telle que désirée. Notons a, le milieu
jeN
de I,.

I va s’agir d’abord de minorer |72 " (a,) N Fy|, pour ce faire nous allons intégrer 1p, suivant
toutes les hauteurs du cylindre, ces derniéres n’étant autres que les translatés de I, par un vecteur
orthogonal & I,,, de norme inférieure & 27%. Il nous faut donc étudier ces translations : posons z, un
tel vecteur de translation et Gj, := zy + Gy, I, := 29 + I,. Ci-dessous, la situation est représentée
pour n = 3.

En fait la translation est suffisamment petite et Fj, suffisamment épais pour que 'on ait G}, C Fy.
En effet, si x € G, alors © = y + 29 avec y € Gj. Ainsi il existe j tel que ||y — z;|| < r; et donc :

|z — 5] < ly — 25| + |[20l] <75+ 57 <75+ 15 < 107

ok
Puisque v € Sy, cette inclusion entraine :

d
— < |L,NGE| < (I, NGy) + 20| < I, NG| <IN Fyl.

On a donc une minoration de |I] N Fy| indépendante de la translation. L’intégrale telle que
voulue va donc nous apporter une minoration de |7, fik(av) N Fy|. Calculons en effet :

45



FIGURE 4.2 — T2 "(a,) avec n = 3

46



_ / 15, (1) dt d
B, n—1

R (072%) Iy+2z0

:/ (L + 20) N Fy| dzo
Bgn—1(0 2%)

1
BRn—l (0, 2_k> '

1
2—k) est inclus dans un plan de dimension n — 1 orthogonal

ol le domaine d’intégration Brn-1 <O,
av.
On peut donc directement passer a la minoration de f;_,, avec toujours v € Sy tel que fixé, on
T2 " (a,) N Fy| _ d
> x(v) = su 1p (2)dx > —° > —.
fan) b ]iﬁk(av) ) 73" (av)| k?

a€eR”

1
. d\" rood 1
0= ([ () @) = alsid
k

Or la conjecture de la fonction maximale de Kakeya donne :

Donc :

Ve >0, 3C: >0, | fo-rlp < C2%1p,[l,.

Donc on a, pour tout € > 0 fixé :
d 1 ke 1
3ISHP < C.2% R,

Ainsi :

2
5 < 0. ore |
S v

< CZ’EZ” c E 1075wy
J€Jx
2p 1

k ke1nn
< CEPWQP 10 on(k—1)

_ v <10num) k2p2k,‘p87n(k’*l)‘!]k‘.
€ dp

wn\Jk\
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10™w,,

Posons C(p,n,d) := o

Remarquons que :

k2p2kpaf(kfl)n k2p2kp€+n k2p

_ n

9—k(n—2pe) o 22kpe - 9kpe’

est borné en k. Donc on a M (n, p, ) tel que k%2~ (E=Dn < N (n, p, £)275"=209) Posons 5(71, p,e,d) =
C?C(p,n,d)M(n,p,¢), alors :

~

1Sk < C(n, p, e, d)27F=22)| |,

pour tous les k tels que Sy, # 0 puisque S" ™' = Upen=Sk. L'inégalité est triviale lorsque S, = ), on
a donc cette inégalité pour tout k € N*.
On peut donc finalement en venir a la minoration de la somme des rayons a l’exposant s, pour

n—s
cela prenons £ < o de sorte que s < n — 2pe, puisque les rayons sont strictement plus petits
p

que 1, on a :

5> n—2pe
Doz

jEN jEN
DI I
kEN* jeJy,
> Z 9—k(n—2pe)| J|
keNx*
2 C(n’p,gg’d)fl Z ‘Sk‘

keN*

> 5(n,p,5,d)’1]8"71| > 0.

On pose alors C := C(n,p,e,d) |S""!| indépendant du d — recouvrement.

On a bien ZT;>C>O.

4.4 Résolution dans le cas n =2

A présent nous allons démontrer la conjecture de la fonction maximale de Kakeya dans le cas
n = 2. En fait, pour étre exact, nous allons donner une majoration un peu plus forte valable pour
0 < 1, la démonstration précédente sera donc toujours valable. Nous aurons ainsi démontré la
conjecture de Kakeya dans le cas n = 2.
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Théoréme 4.6.

3C >0, Vf € Lipo(R"), Y6 > 0, || f5 [l 22(s7-1) < Cv/1og(1/0)]| fl2-

[ /1 1
Remarque 4.4. Pour tout e > 0, 6°4 [log (5) — 0. Done pour § < 1, 3C. > 0, & [log <5> <
—

Ce.. Cette derniére inégalité implique bien celle désirée.

Démonstration. Commengons par construire une fonction ¢ : R — R qui nous sera bien utile.
Soit v € CF(R) C S(R) d’intégrale sur R égale & 2. On pose alors u € S(R) sa transformée de
Fourier inverse. Ainsi on a :

w(0) = 5(0) = 5(0) = /Rv _9

On choisit alors A > 0 tel que la fonction u <X
N 2

o= (u(3))

Ainsi ¢ € S(R), est une fonction positive, plus grande que 1 sur [—1, 1], et sa transformée de
Fourier est a support compact puisque :

> soit supérieure & 1 sur [—1,1]. On pose alors

b = (u/(;))Q = 1@ « 1@ = A2 (a(A)? = A2 0*(\) € C2(R).

Passons a présent a la démonstration & proprement parler, posons ¢ : R* —s R définie par

= 1
U(xy,29) = %. On pose aussi pj : © — 2—(51T3(0) (x), de sorte que :
5 () = sup (p * f) (a).
a€R?

En observant les deux cas # € T°(0) et = ¢ T°(0) séparément, on a p5' < 1, avec e; le premier

vecteur de la base canonique de R% On en déduit f;(e;) < sup (2 * f)(a). Ainsi, si pour v € S* on
a€R?
note P, 'application linéaire envoyant v sur ey, et que 1’on note v, := ¢ o P,, on a donc :

f5 (v) < sup (¢, * f)(a).

acR?

On a alors les inégalités suivantes :
v

f) <[ty * flloo = C" ||ihu || =C"

& /R2 e’ixfiﬁv(x)f(x)d:v

<c [ W@liwlds,

‘ o0 oo

ot C' dépend de la normalisation choisie pour la transformée de Fourier. Or par 'inégalité de
Cauchy Schwarz on a :

NI

| [u@lf(@)lde < ( [ @ @)P (0t Hx\|>d:c>2 ( b(2) d:c)

k2 1+ []]
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Un calcul explicite donne 121(931, T9) = Qg(l'l)qg((h?g) Puisque la transformée de Fourier est une
opération linéaire, on a aussi ¢, = ¥ o P,. Par conséquent, ¢ étant bornée, on voit que v, est
bornée indépendemment de v, notons en M un majorant.

Notons aussi [—7, 7] un segment contenant le support de gg Par le calcul explicite de 1[}, on peut
avoir une idée de son support.

(=n,n/9) 3 (n,n/9)

(@] 2 Q
(=n,m) (n,m)
-3 » = 0 1 3

(@] 1]

(=n,—n) (n,—n)

-3
(7777 777/6) (777 _77/6)

FIGURE 4.3 — Support de 1, avec v = e;

Sur ce dessin on a divise le support en 3 parties, parties qui vont étre celles intervenant dans
la majoration de w” <M /
re 1 |xH

T THH ne dépend que de la distance euclidienne de x a 'origine. Le support de wAv n’étant
x

alors qu'une rotation de celui de 1.,, on peut supposer v = ey, la majoration obtenue restera

il ———dx, ou R désigne le support de wAU. Or la fonction
x
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valable pour tout v € S'. On calcule,

1 1 1
/—d:c:/ —dx+/ dz
e Tl ™ = ) e Tl ™ o T 117
) n rn/é 1
< =m )l +2 / / L rda,

L T

n/é
-nJn |ZE2|

n/6 q
< iy +477/ —dl”z
n T2

1
= 4n® + 4n log (5) :

On peut donc poser €', indépendemment de v, tel que :

< [ (5)ces(5)
S0 de <M | ————dx < AMn? 4+ 4M log C log
e 1+ 2] T+ [« 7 T8 5 5

Ainsi :

1517 = [ 15w

<[ (L

(@)
DI @PQ+ el [ 1+nwud$) v

[do(@)||f (@)1 + |l2])) d dv

[ 1i@ra el ([ 1wl o

IF113

N
Q
S

0

I
=
[ V]

N
Q
=)

0

= C log 1£12.

VA
Q
2
TN TN TN TN
~— — @)

S e e B s e T

La derniere égalité étant obtenue par théoréme de Plancherel.
Nous avons donc démontré la Conjecture de la fonction mazimale de Kakeya dans le cas n = 2,
on a donc bien la Conjecture de Kakeya dans le cas n = 2. O]
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