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Avant-propos

Ce document constitue le mémoire d’un projet de plusieurs semaines mené dans le cadre du
master 1 de mathématiques d’Orsay. Son but est la découverte et/ou l’approfondissement de no-
tions mathématiques à travers un sujet proche de la recherche en mathématiques, le tout étant
encadré par un enseignant-chercheur du département de mathématiques d’Orsay. Sur les traces de
notre encadrant, nous nous sommes donc intéressés à la dimension de Hausdorff.

Nous faisons tout d’abord un rappel sur la mesure de Hausdorff ainsi que la dimension de Haus-
dorff. Puis nous nous intéressons à des résultats de densité pour cette mesure. Ces résultats sont
analogues aux résultats de densité bien connus pour la mesure de Lebesgue. Nous allons d’abord
avoir besoin d’un théorème de Vitali, que nous prouverons ainsi que quelques autres propriétés, qui
nous serons utiles pour étudier, par la suite ces théorème de densités. Ensuite nous allons calculer
la dimension de Hausdorff du graphe de divers fonctions. Enfin nous étudierons le comportement
de la dimension de Hausdorff vis à vis des Ensembles de Besicovitch dont la mesure extérieure de
Lebesgue peut être petite voire nulle.

Nous nous sommes largement appuyé sur l’ouvrage de Falconer The geometry of fractal sets
[2], mais également sur les notes de Hervé de Pajot pour la dernière partie.

Nous remercions tout particulièrement M. Laurent Moonens, enseignant-chercheur à l’université
Paris-Saclay, pour son aide et ses conseils précieux durant l’élaboration de ce mémoire.



Notations et conventions

Dans l’entièreté de ce projet, nous adopterons les notations et conventions suivantes :

– On désignera par R le corps des réels.

– On désignera par N et Z respectivement l’ensemble des nombres entiers naturels et celui des
nombres entiers relatifs.

– On notera Sn le cercle unité de Rn+1.

– Étant donné f une fonction à valeurs réelles et un réel a, on notera {f < a} respectivement
{f > a} l’ensemble des points où f est inférieure, respectivement supérieure à a.

– On désignera par B(x, r) la boule de centre x et de rayon r > 0.

– On désignera par Bf (x, r) la boule fermée de centre x et de rayon r > 0.

– On désignera par |U | le diamètre d’un ensemble U , i.e. |U | := sup{‖x− y‖ : x, y ∈ U}.

– On désignera par dist(x,E) la distance de x ∈ Rn à l’ensemble E ⊂ Rn, i.e.
dist(x,E) = inf

y∈E
‖x− y‖.
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Chapitre 1

Rappel sur la dimension et la mesure de
Hausdorff

1.1 Mesure de Hausdorff

Nous allons commencer par introduire la notion de mesure de Hausdorff.

Définition 1.1. (Mesure de Hausdorff)

Soit A une partie d’un espace vectoriel normé X. Soient s ≥ 0 et δ > 0.
On définit une mesure extérieure Hs

δ(A) par :

Hs
δ(A) := inf

{∑
i∈I

|Ui|s : A ⊂
⋃
i∈I

Ui et |Ui| ≤ δ

}
,

On définit alors la mesure de Hausdorff s-dimensionnelle de A par :

Hs(A) := lim
δ→0+
Hs
δ(A).

Remarque 1.1. On peut, dans cette définition, prendre, sans perte de généralité, un recouvrement
(Ui) avec Ui convexe. En effet, si un Ui n’est pas convexe on peut alors considérer son enveloppe
convexe, dont le diamètre est le même que celui de l’ensemble de départ. Ainsi en remplaçant,
les ensembles du recouvrement par leur enveloppe convexe, on obtient un recouvrement de convexe
qui vérifie les mêmes propriétés que le recouvrement initiale, vis à vis de la définition que nous
considérons.
Nous utiliserons donc, par la suite, notamment dans le chapitre 2, la définition analogue qui consi-
dère des recouvrements avec des convexes.

3



1.2 Dimension de Hausdorff

Il nous reste maintenant à définir la dimension de Hausdorff.

Définition 1.2. (Dimension de Hausdorff)

Soit A une partie d’un espace vectoriel normé X. Il existe un unique réel strictement positif d tel
que :
— pour tout a > d, on a Ha(A) = 0,
— pour tout 0 ≤ b < d, on a Hb(A) = +∞.

Ce nombre d est appelé la dimension de Hausdorff de A et on le note dim(A).

Figure 1.1 – Schéma du comportement de la mesure de Hausdorff.

Remarque 1.2. Intuitivement, la mesure de Hausdorff 1-dimensionnelle permet de mesurer « la
longueur » d’un objet, la mesure de Hausdorff 2-dimensionnelle « son aire » et la mesure de Haus-
dorff 3-dimensionnelle sont « volume ». Cependant, certains objets peuvent avoir une dimension
de Hausdorff non entière...

Proposition 1.1. Pour δ > 0, s > 0, A ⊂ Rn on définit
∼
Hs
δ(A) de la même façon que Hs

δ(A)
excepté que l’on considère uniquement les recouvrements par des boules. On pose alors de même
∼
Hs(A) = lim

δ→0+

∼
Hs
δ(A), et on définit ainsi

∼
dim(A).

Alors
∼
dim(A) = dim(A).
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Démonstration. Un recouvrement par des boules est en particulier un recouvrement. DoncHs(A) 6
∼
Hs(A). Soit A ⊂ Rn. Soit δ > 0, posons (Ej)j>0 un recouvrement de A par des ouverts de diamètres
inférieur à δ. Posons aussi (Bj)j>0 tel que Ej ⊂ Bj := B(xj, |Ej|). Donc (Bj)j>0 est un recouvrement
de A par des boules de diamètre inférieur à 2δ. Donc,

∼
Hs

2δ(A) 6
∑
j>0

|Bj|s = 2s
∑
j>0

|Ej|s.

Cette inégalité étant vraie pour tout recouvrement (Ej)j>0 de A par des ouverts de diamètre

inférieur à δ, on peut passer l’infimum en δ. Donc
∼
Hs(A) 6 2sHs(A).

Ainsi,
Hs(A) 6

∼
Hs(A) 6 2sHs(A).

On conclut à l’égalité des dimensions.
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Chapitre 2

Propriétés de densité

2.1 Définitions

Commençons par introduire les objets sur lesquels nous allons travailler.

Soit n ∈ N. On travaille dans Rn.

Soit 0 6 s 6 n.

Définition 2.1. Soit E un sous-ensemble de Rn.
On dit que E est un s-espace s’il est Hs-mesurable et 0 < Hs(E) <∞.

Définition 2.2. Soient E un s-espace et x ∈ Rn.
La densité supérieure de E au point x est :

D
s
(E, x) = lim sup

r→0

Hs(E ∩Bf (x, r))

(2r)s
.

De même on définit également :

Définition 2.3. Soient E un s-espace et x ∈ Rn.
La densité inférieure de E au point x est :

Ds(E, x) = lim inf
r→0

Hs(E ∩Bf (x, r))

(2r)s
.

Définition 2.4. Soient E un s-espace et x ∈ E.
On dit que x est un point régulier de E si Ds

(E, x) = Ds(E, x) = 1.
Sinon on dit que x est un point irrégulier de E.

Définition 2.5. Soient E un s-espace.
On dit que E est régulier irrégulier si pour Hs-presque tout x ∈ E, x est régulier irrégulier.
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Définition 2.6. Soient E un s-espace et x ∈ Rn.
La densité convexe supérieure de E au point x est :

D
s

c(E, x) = lim
r→0

sup

{
Hs(E ∩ U)

|U |s
, U convexe tel que x ∈ U et 0 < |U | 6 r

}
.

2.2 Résultats préliminaires

Avant de démontrer les théorèmes de densité, qui nous intéresse ici, il nous faut établir quelques
résultats.

Proposition 2.1. Soient E un s-espace et x ∈ Rn, on a alors :

2−sD
s

c(E, x) 6 D
s
(E, x) 6 D

s

c(E, x).

Démonstration.

— On remarque que si on a un sous ensemble V ⊂ Rn et x0 ∈ V , alors V ⊂ Bf (x0, |V |).
Soit r > 0.
Donc, d’après cette remarque, si U est convexe et tel que x ∈ U , 0 < |U | 6 r, alors
U ⊂ Bf (x, |U |).
Et il vient donc :

Hs(E ∩ U)

|U |s
6
Hs(E ∩Bf (x, |U |))

|U |s

= 2s
Hs(E ∩Bf (x, |U |))

(2|U |)s

6 2s sup
ρ6r

Hs(E ∩Bf (x, ρ))

(2ρ)s
.

Puis, par passage à la borne supérieure, on obtient :

sup

{
Hs(E ∩ U)

|U |s
: U convexe tel que x ∈ U et 0 < |U | 6 r

}
6 2s sup

ρ6r

Hs(E ∩Bf (x, ρ))

(2ρ)s
.

Ainsi, par passage à la limite, il vient :

2−sD
s

c(E, x) 6 D
s
(E, x).
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— On remarque que :

Bf (x, r) ∈ {U convexe tel que x ∈ U et 0 < |U | 6 2r}.

Donc , par définition de la limite supérieure, on a bien :

D
s
(E, x) 6 D

s

c(E, x).

Lemme 2.1. Soit E un s-espace.

1. Pour tout r > 0, x 7→ Hs(E ∩ Bf (x, r)) est une fonction semi-continue supérieurement et
donc Borel-mesurable.

2. x 7→ D
s
(E, x) et x 7→ Ds(E, x) sont des fonctions Borel-mesurables.

Démonstration.

1. On rappelle une caractérisation de la semi-continuité supérieure.
On dit que f est semi-continue supérieurement si et seulement si ∀α ∈ R, {x : f(x) > α} est
fermé.

Soit r > 0.
Soit α ∈ R (ici on peut même prendre α > 0 car on sait que Hs(E) > 0).
On pose O := {x : Hs(E ∩Bf (x, r)) < α}.
On veut montrer que O est ouvert.
Soit x ∈ O.
On sait que Bf (x, r+ ε) décroît vers Bf (x, r) quand ε décroît vers 0, et comme Hs(E) <∞,
(et donc que pour tout ε > 0, Hs(E ∩ Bf (x, r + ε)) < ∞), et que donc E ∩ Bf (x, r) est
l’intersection des E ∩Bf (x, r+ ε), de Hs-mesures finies, on obtient que Hs(E ∩Bf (x, r+ ε))
décroît vers Hs(E ∩Bf (x, r)).
Il existe donc ε > 0 tel que Hs(E∩Bf (x, r+ε)) < α (car x ∈ O donc Hs(E∩Bf (x, r)) < α).
Ainsi, si on prend y ∈ Rn tel que |x − y| 6 ε (i.e. y ∈ Bf (x, ε)), alors, par inéga-
lité triangulaire, Bf (y, r) ⊂ Bf (x, r + ε). Puis, par croissance de la mesure de Hausdorff,
Hs(E ∩Bf (y, r)) 6 Hs(E ∩Bf (x, r + ε)) < α.
Donc, y ∈ O i.e. Bf (x, ε) ⊂ O, d’où O est ouvert.
Puis Rn \O est fermé i.e., par la caractérisation rappelée, Hs(E ∩Bf (x, r)) est une fonction
semi-continue supérieurement de x.

2. On rappelle que dire que f est Borel-mesurable équivaut à dire que : ∀α ∈ R, {x : f(x) < α}
est un borélien.
Soit α ∈ R, comme précédemment on peut se restreindre à α > 0.
Soit r > 0.
On veut montrer que {x : Ds(E, x) < α} est un borélien.
D’après 1., l’ensemble {x : Hs(E ∩Bf (x, r)) < α(2r)s} est ouvert.

8



Soit ρ > 0.
On pose Fρ := {x : Hs(E ∩ Bf (x, r)) < α(2r)s pour un r < ρ}. L’ensemble Fρ est ouvert,
comme union d’ouverts.
On a donc :

{x : Ds(E, x) < α} =

{
x : lim inf

r→0

Hs(E ∩Bf (x, r))

(2r)s
< α

}
=
⋂
ρ>0

Fρ.

Cette égalité reste vraie si on prend l’intersection sur les ρ > 0 rationnels. L’intersection
devient alors dénombrable. L’ensemble {x : Ds(E, x) < α} est donc un Gδ (intersection
dénombrable d’ouverts), donc borélien.
D’où, x 7→ Ds(E, x) est Borel-mesurable.
On procède de façon analogue pour montrer que x 7→ D

s
(E, x) est aussi Borel-mesurable.

Nous allons maintenant introduire une notion de recouvrement de Vitali pour la mesure de Haus-
dorff et un théorème de Vitali, qui va nous être utile par la suite. Il s’agit ici, non pas du théorème
de Vitali classique, mais plutôt d’une version intéressante par rapport à notre étude.

Lemme 2.2. Soit E un ensemble Hs-mesurable tel que Hs(E) <∞. Et soit ε > 0.
Alors il existe ρ > 0 (qui ne dépend que de E et ε) tel que pour toute suite de boréliens (Ui)
vérifiant, pour tout i, 0 < |Ui| 6 ρ, on ait :

Hs

(
E ∩

⋃
i

Ui

)
<
∑
i

|Ui|s + ε.

Remarque 2.1. La démonstration de ce lemme s’appuie sur la définition de la mesure de Haus-
dorff, comme la limite quand δ → 0 de Hs

δ et la partition de E en E \
⋃
i

Ui et E ∩
⋃
i

Ui. Pour

plus de détails, voir la démonstration du lemme 1.7 (page 9) dans The geometry of fractal sets [2].

Définition 2.7. On appelle recouvrement de Vitali de E, une famille V d’ensembles telle que
pour tout x ∈ E et δ > 0, il existe U ∈ V tel que x ∈ U et 0 < |U | 6 δ.

Théorème 2.1. (Théorème de Vitali)

1. Soit E un sous-ensemble Hs-mesurable de Rn et soit V un recouvrement de Vitali (de fermés)
de E.
Alors il existe une suite finie ou dénombrable d’ensembles disjoints (Ui) de V telle qu’on ait
soit

∑
i

|Ui|s =∞ soit Hs(E \
⋃
i

Ui) = 0.
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2. Si de plus Hs(E) <∞, alors pour ε > 0 fixé, on a également :

Hs(E) 6
∑
i

|Ui|s + ε.

Démonstration.

1. Soit ρ > 0.
On peut supposer que |U | 6 ρ, ∀U ∈ V .
On fait un raisonnement par induction pour trouver la suite des (Ui).
Soit U1 ∈ V quelconque.
On suppose avoir choisi U1, . . . , Um ∈ V .
On note dm = sup{|U | : U ∈ V tel qu’il vérifie U ∩ Ui = ∅,∀1 6 i 6 m}.
— Si dm = 0 alors, comme par définition d’un recouvrement de Vitali, ∀U ∈ V , |U | > 0, il

vient : {|U | : U ∈ V tel que U ∩ Ui = ∅,∀1 6 i 6 m} = ∅. Donc pour tout U ∈ V , il
existe 1 6 i 6 m tel que U ∩ Ui 6= ∅.
Soit x ∈ E.
Soit k ∈ N, on pose δ := 2−k > 0.
Alors, il existe un U ∈ V tel que x ∈ U et 0 < |U | 6 δ (U dépend donc de k).
Ainsi, par ce qui précède, il existe 1 6 ik 6 m tel que U ∩ Uik 6= ∅. Il existe donc
xk ∈ U ∩ Uik , et alors |x − xk| 6 2−k (car x et xk appartiennent à U , qui vérifie
|U | 6 δ = 2−k).
On choisit alors 1 6 i 6 m tel que {k ∈ N : ik = i} soit infini. On numérote alors ces
indices {kl, l ∈ N}. Et ainsi, on obtient xkl −−−−→

l→+∞
x (car kl −−−−→

l→+∞
+∞, et cela vient du

fait qu’on a pris l’ensemble {k ∈ N : ik = i} infini). Or, pour tout l ∈ N, on a xkl ∈ Ui
(par définition des kl). Donc par fermeture de Ui, il vient finalement x ∈ Ui.

D’où E ⊂
m⋃
i=1

Ui.

Donc E \
m⋃
i=1

Ui = ∅.

On obtient donc bien Hs(E \
m⋃
i=1

Ui) = 0. Et on a une suite finie donc la somme
m∑
i=1

|Ui|s

est bien finie.

— Sinon, on prend Um+1 ∈ V un ensemble disjoint de
m⋃
i=1

Ui tel que |Um+1| >
1

2
dm > 0.

Si le processus continue indéfiniment (i.e. on a jamais dm = 0), on suppose∑
|Ui|s <∞.

On veut maintenant montrer que, dans ce cas, Hs(E \
⋃
i

Ui) = 0.

On pose, ∀i, Bi = Bf (xi, 3|Ui|), avec xi ∈ Ui choisi arbitrairement.
On va tout d’abord montrer que ∀k > 1 :

E \
k⋃
i=1

Ui ⊂
∞⋃

i=k+1

Bi.
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Si x ∈ E \
k⋃
i=1

Ui, alors il existe U ∈ V tel que U ∩ Ui = ∅, ∀1 6 i 6 k et x ∈ U (car V

est un recouvrement de Vitali et car dm > 0). Comme |Ui| −→ 0 (car
∑
|Ui|s < ∞),

on obtient pour un m assez grand, |U | > 2|Um|.
Or, par hypothèse, le processus de sélection des Ui continue indéfiniment, donc il existe
k < j < m tel que U ∩ Uj 6= ∅ (car si ∀1 6 j 6 m − 1, U ∩ Uj = ∅, on aurait
|U | 6 dm−1 6 2|Um|, ce qui est contradictoire avec ce que l’on vient de voir sur U donc
on a forcément j < k). Et alors |U | 6 sup{|V | : V ∈ V tel que V ∩ Ui = ∅,∀1 6 i 6
j − 1} = dj−1 6 2|Uj|.
Alors, il existe yj ∈ Uj ∩ U , donc pour x ∈ U on a

d(x, xj) 6 d(x, yj) + d(yj, xj)

6 |U |+ |Uj|
6 2|Uj|+ |Uj|
6 3|Uj|.

Ainsi x ∈ Bj, d’où Bj = Bf (xj, 3|Uj|) ⊃ U .
D’où l’inclusion souhaitée.
Donc pour δ > 0 et k assez grand pour que |Bi| 6 δ, ∀i > k,

Hs
δ

(
E \

∞⋃
i=1

Ui

)
6 Hs

δ

(
E \

k⋃
i=1

Ui

)

6 Hs
δ

(
∞⋃

i=k+1

Bi

)

6
∞∑

i=k+1

|Bi|s

= 6s
∞∑

i=k+1

|Ui|s.

Or, par hypothèse la série est convergente, donc la somme des reste
∞∑

i=k+1

|Ui|s tend vers

0 quand k → +∞.
Donc : pour tout δ > 0 Hs

δ

(
E \

⋃
Ui

)
= 0.

Et ainsi on trouve bien Hs
(
E \

⋃
Ui

)
= 0.

On a alors montré le premier point du théorème.
2. On prend le ρ correspondant à ε dans le lemme 2.2.

Si
∑
|Ui|s =∞ alors il n’y a rien à faire.

Sinon, par le 1. et le lemme 2.2 on obtient :

Hs(E) = Hs
(
E \

⋃
Ui

)
+Hs

(
E ∩

⋃
Ui

)
6
∑
|Ui|s + ε.
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2.3 Théorèmes de densité et corollaires

Théorème 2.2. Si E est un s-espace alors Ds

c(E, x) = 0 pour Hs-presque tout x /∈ E.

Démonstration.
Soit α > 0.
On veut montrer que l’ensemble F := {x /∈ E : D

s

c(E, x) > α} est de mesure nulle.
On sait que E est Hs-mesurable et que Hs(E) < ∞, car c’est un s-espace, il vient donc, par
régularité de la mesure Hs, que pour tout δ > 0, il existe E1 ⊂ E fermé tel que Hs(E \ E1) < δ.
Soit ρ > 0.
On définit Vρ := {U : U fermé et convexe tel que 0 < |U | 6 ρ, U ∩E1 = ∅ et Hs(E∩U) > α|U |s}.
Montrons que Vρ est un recouvrement de Vitali par des fermés de F .

— Si U ∈ Vρ alors, par définition, 0 < |U |.
— Soit x ∈ F , alors x /∈ E et Ds

c(E, x) > α.
Alors x /∈ E1, donc dist(x,E1) > 0.
Soit δ > 0.
Par définition,

D
s

c(E, x) = lim
r→0

sup

{
Hs(E ∩ U)

|U |s
, U convexe tel que x ∈ U et 0 < |U | 6 r

}
> α.

Donc, il existe ε < min(ρ, δ, dist(x,E1)) et U convexe, que l’on peut supposer fermé sans

perte de généralité, et tel que x ∈ U et 0 < |U | < ε avec
Hs(E ∩ U)

|U |s
> α.

Or, comme ε < min(ρ, δ, dist(x,E1)) 6 dist(x,E1), il vient : U ∩ E1 = ∅, et puisque
ε < min(ρ, δ, dist(x,E1)) 6 ρ, on a bien obtenu U ∈ Vρ. Ainsi, x ∈ U pour un U ∈ Vρ tel
que |U | < ε 6 δ.

Donc Vρ est un recouvrement de Vitali par des fermés de F .

On peut donc appliquer le théorème de Vitali (théorème 2.1 1)) : il existe (Ui) ⊂ V suite finie ou
dénombrable d’ensembles disjoints tels que soit

∑
|Ui|s =∞ soit Hs(F \

⋃
Ui) = 0.

Or Ui ∈ V , donc |Ui|s <
1

α
Hs(E∩Ui). Ainsi,

∑
|Ui|s <

1

α

∑
Hs(E∩Ui), et comme les ensembles

sont disjoints, il vient par σ-additivité de la mesure :

1

α

∑
Hs(E ∩ Ui) =

1

α
Hs(E ∩

⋃
i

Ui).

Et puisque Ui ∩ E1 = ∅, ∀i il vient :

1

α
Hs(E ∩

⋃
i

Ui) 6
1

α
Hs(E \ E1) 6

δ

α
.
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D’où,
∑
|Ui|s 6

δ

α
<∞.

On a donc : Hs(F \
⋃

Ui) = 0.
On en déduit alors :

Hs
ρ(F ) 6 Hs

ρ(F \
⋃

Ui) +Hs
ρ(F ∩

⋃
Ui)

6 Hs(F \
⋃

Ui) +
∑
|Ui|s

=
∑
|Ui|s.

D’où finalement, Hs(F ) 6
δ

α
.

Puis, comme δ > 0 est arbitraire (et ρ > 0 aussi), on en déduit : Hs(F ) = 0.

Théorème 2.3. Si E est un s-espace alors Ds

c(E, x) = 1 pour Hs-presque tout x ∈ E.

Démonstration.

1. Montrons que Ds

c(E, x) > 1 pour Hs-presque tout x ∈ E, en utilisant la définition de la
mesure de Hausdorff.

Soit α < 1 et ρ > 0,
On pose :

F := {x ∈ E : Hs(E ∩ U) 6 α|U |s pour tout U convexe tel que x ∈ U et |U | 6 ρ}

=

{
x ∈ E : sup

{
Hs(E ∩ U)

|U |s
: pour tout U convexe tel que x ∈ U et |U | 6 ρ

}
6 α

}
.

Montrons qu’alors F est Hs-mesurable.

On note ϕr(x) := sup

{
Hs(E ∩ U)

|U |s
: U ouvert convexe tel que x ∈ U et 0 < |U | 6 r

}
.

(On peut prendre U ouvert dans la définition de Ds

c(E, x) sans perte de généralité.)
On a donc F = E ∩ ϕ−1

r (]−∞;α]).
Il suffit donc de montrer que ϕr est Hs-mesurable, car alors F sera l’intersection de deux
ensembles Hs-mesurables donc sera lui-même Hs-mesurable.
Montrons donc que ϕr estHs-mesurable, pour cela on va montrer que l’ensemble ϕ−1

r (]a,+∞[)
est ouvert quel que soit a > 0.
Soit a > 0, et soit x ∈ ϕ−1

r (]a,+∞[).
Par définition de ϕr, en tant que borne supérieure, on sait qu’il existe un U ouvert convexe

non vide tel que x ∈ U et 0 < |U | 6 r qui vérifie :
Hs(U ∩ E)

|U |s
> a.

Or pour tout y ∈ U , on sait donc qu’il existe un U ′ (en fait U lui-même) ouvert convexe non
vide tel que x ∈ U et 0 < |U | 6 r. Et alors, par définition de ϕr comme borne supérieure,
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on obtient ϕr(y) >
Hs(U ∩ E)

|U |s
> a.

Donc finalement, y ∈ ϕ−1
r (]a,+∞[). Donc U ⊂ ϕ−1

r (]a,+∞[) et ainsi on a bien montré que
ϕ−1
r (]a,+∞[) est ouvert.

Soit ε > 0.
On a alors un recouvrement de F par des convexes (Ui) tels que |Ui| 6 ρ et∑
|Ui|s < Hs(F ) + ε (cf remarque 1.1).

Alors, si on suppose, sans perte de généralité, que ∀i, Ui ∩ F 6= ∅, on obtient :

Hs(F ) 6
∑
Hs(F ∩ Ui)

6
∑
Hs(E ∩ Ui)

6
∑

α|Ui|s

6 α
∑
|Ui|s

6 α︸︷︷︸
<1

(Hs(F ) + ε)

< αHs(F ) + ε.

Ainsi en faisant tendre α et ε vers 0, on obtient : Hs(F ) = 0.
Comme ceci est vrai pour tout ρ > 0, il vient par définition de Ds

c(E, x) :

Hs({x ∈ E : D
s

c(E, x) < α}) = 0.

D’où : Ds

c(E, x) > α pour Hs-presque tout x ∈ E.
Puisqu’on a le résultat pour tout α < 1, on peut conclure que Ds

c(E, x) > 1 pour Hs-presque
tout x ∈ E.

2. Montrons que Ds

c(E, x) 6 1 pour Hs-presque tout x ∈ E, en utilisant le théorème de Vitali
(théorème 2.1).

Soit α > 1.
On pose F := {x ∈ E : D

s

c(E, x) > α}.
L’ensemble F est Hs-mesurable (preuve analogue à la mesurabilité de F du point de la dé-
monstration qui précède).

On pose F0 := {x ∈ F : D
s

c(E \ F, x) = 0}.
L’ensemble E \F est Hs-mesurable car E et F le sont. De plus, comme E est un s-espace on
sait aussi que Hs(E \ F ) <∞. On distingue, maintenant, deux cas :
— Si Hs(E \ F ) = 0.

Alors, par la définition de Ds

c(E \ F, x), il vient que, pour tout y, Ds

c(E \ F, y) = 0.
De cela, on déduit que F = F0, puis donc que Hs(F \ F0) = 0.

— On suppose maintenant que 0 < Hs(E \ F ).
Alors, E \F est un s-espace, on peut donc appliquer le théorème 2.2 : pour Hs-presque
tout x /∈ E \ F , Ds

c(E \ F, x) = 0. Donc pour Hs-presque tout x ∈ F , on a
D
s

c(E \ F, x) = 0. Ainsi pour Hs-presque tout x ∈ F , x ∈ F0. D’où, Hs(F \ F0) = 0.
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Soit ε > 0.
Par sous-additivité de la mesure extérieure, on a, en outre, pour tout r > 0 et pour tout U
convexe tel que x ∈ U et 0 < |U | 6 min(r, ε), Hs(E ∩ U) 6 Hs((E \ F ) ∩ U) +Hs(F ∩ U).
Si x ∈ F0, il vient donc par définition de la densité convexe :

D
s

c(F, x) > D
s

c(E, x)−Ds

c(E \ F, x) = D
s

c(E, x) > α.

On pose maintenant : V := {U : U fermé convexe tel que Hs(F ∩ U) > α|U |s}.
Par l’inégalité qui précède et comme ε est arbitraire, il vient que V est un recouvrement de
Vitali de F0 .

Ainsi, d’après le théorème de Vitali (2.1 2)), comme Hs(F0) < ∞ (car F0 ⊂ F ⊂ E donc
Hs(F0) 6 Hs(F ) 6 Hs(E) < ∞), on a pour tout ε > 0, l’existence d’une suite (Ui) d’en-
sembles disjoints de V tels que :

Hs(F0) 6
∑
|Ui|s + ε.

Puis, comme Hs(F \ F0) = 0, on obtient :

Hs(F ) 6 Hs(F0)

6
∑
|Ui|s + ε

<
1

α

∑
Hs(F ∩ Ui) + ε

6
1

α
Hs(F ) + ε.

Comme on a cela pour ε > 0 arbitraire et α > 1 , on obtient bien Hs(F ) = 0.

Corollaire 2.1. Si E est un s-espace, alors Ds(E, x) = 0 pour Hs-presque tout x /∈ E.

Démonstration. Soit E un s-espace.
D’après le théorème 2.2, pour Hs-presque tout x /∈ E, Ds

c(E, x) = 0. Et par la proposition 2.1, on
a : 2−sD

s

c(E, x) 6 D
s
(E, x) 6 D

s

c(E, x).

Il vient donc que Ds
(E, x) = 0, pour Hs-presque tout x /∈ E.

Puis, par propriété des limites supérieures et inférieures, il vient pour Hs-presque tout x /∈ E :

0 6 Ds(E, x)D
s
(E, x) = 0.

D’où, Ds(E, x) = 0, pour Hs-presque tout x /∈ E.
D’où finalement, Ds(E, x) = 0 pour Hs-presque tout x /∈ E.
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Corollaire 2.2. Si E est un s-espace, alors pour Hs-presque tout x ∈ E, on a :

2−s 6 D
s
(E, x) 6 1.

Démonstration. Soit E un s-espace.
D’après le théorème 2.3, pour Hs-presque tout x ∈ E, Ds

c(E, x) = 1. Et en vertu de la proposition
2.1, on obtient bien : 2−s 6 D

s
(E, x) 6 1.

Corollaire 2.3. Soient E un s-espace et F un sous-ensemble Hs-mesurable de E.
Alors, Ds(F, x) = Ds(E, x) et Ds

(F, x) = D
s
(E, x) pour Hs-presque tout x ∈ F .

Démonstration. On note H := E \ F .
D’après le corollaire 2.1, Ds(H, x) = 0 pour presque tout x /∈ H et donc pour presque tout x ∈ F .
On a donc, pour presque tout x ∈ F :

Ds(E, x) = Ds(F, x) +Ds(H, x) = Ds(F, x),

et de même :
D
s
(E, x) = D

s
(F, x) +Ds(H, x) = D

s
(F, x).

Corollaire 2.4. Soit E =
⋃
j

Ej une union dénombrable de s-espaces disjoints avec Hs(E) <∞.

Alors, ∀k, Ds(Ek, x) = Ds(E, x) et Ds
(Ek, x) = D

s
(E, x) pour Hs-presque tout x ∈ Ek.

Démonstration. Cela vient directement du corollaire 2.3, que l’on applique à chacun des Ek.

Corollaire 2.5. Soit E un s-espace.
Si E est régulier irrégulier alors tout sous-ensemble Hs-mesurable de E de mesure positive est
régulier irrégulier.

Démonstration. On suppose E est régulier irrégulier.
Soit F un sous-ensemble Hs-mesurable de E de mesure positive (comme Hs(F ) 6 Hs(E) <∞, F
est bien un s-espace, donc dire que F est régulier a bien un sens, en vertu de la définition 2.5).
Alors par le corollaire 2.3, pour Hs-presque tout x ∈ F , Ds(F, x) = Ds(E, x) et
D
s
(F, x) = D

s
(E, x).

Or E est supposé régulier irrégulier, donc pour Hs-presque tout x ∈ E,

Ds(E, x) = D
s
(E, x) = 1= 0.

D’où, pour Hs-presque tout x ∈ F , Ds(F, x) = D
s
(F, x) = 1= 0, i.e. F est régulier irrégulier.
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Corollaire 2.6.

1. L’intersection d’un ensemble régulier irrégulier avec un ensemble Hs-mesurable est un espace
régulier irrégulier.

2. L’intersection d’un ensemble régulier et d’un ensemble irrégulier est de mesure nulle.

Démonstration.

1. L’intersection d’un ensemble régulier irrégulier avec un ensemble Hs-mesurable est un sous
ensemble Hs-mesurable d’un ensemble régulier donc par le corollaire 2.5, il est aussi régulier.

2. Un ensemble régulier irrégulier est Hs-mesurable.
Or par le point précédent, l’intersection d’un Hs-mesurable et d’un régulier irrégulier est
régulier irrégulier.
Donc l’intersection E d’un ensemble régulier avec un ensemble irrégulier est régulier et ir-
régulier en même temps. On a alors que pour Hs-presque tout x ∈ E, Ds(E, x) = 1 et
Ds(E, x) = 0, ce qui implique forcément que Hs(E) = 0.

Corollaire 2.7. (Théorème de décomposition)
Si E est un s-espace, l’ensemble des points réguliers irréguliers de E est régulier irrégulier.

Démonstration. Par le lemme 2.1, l’ensemble des points réguliers irréguliers est un ensemble Hs-
mesurable (comme l’intersection de l’image réciproque du borélien {1} {0} par la fonction bo-
rélienne x 7→ Ds(E, x) avec l’image réciproque du borélien {1} {0} par la fonction borélienne
x 7→ D

s
(E, x)).

Puis, par le corollaire 2.6, on obtient que les points réguliers irréguliers de E sont réguliers irré-
guliers dans F . Ainsi, par définition d’ensemble régulier irrégulier, il vient que ces ensembles sont
respectivement régulier et irrégulier.
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Chapitre 3

Dimension de Hausdorff du graphe de
diverses fonctions

Dans ce chapitre, nous allons travailler dans le plan R2 pour étudier la dimension de Hausdorff de
Γ défini par :

Γ := {(x, f(x)) |x ∈ [0, 1]},
où f est une fonction définie sur l’intervalle [0, 1]. L’ensemble Γ est appelé le graphe de la fonction
f .

3.1 Cas où f est à variation bornée

Définition 3.1. (Fonction à variation bornée)
On dit que ψ : [0, 1]→ Rd est à variation bornée sur [0, 1] s’il existe K > 0 tel que :

m∑
i=1

∣∣∣ψ(xi)− ψ(xi−1)
∣∣∣ ≤ K,

pour toute subdivision 0 = x0 < x1 < · · · < xm = 1.
On définit Λ := ψ([0, 1]). Dans ce cas, on définit la longueur de Λ par :

L(Λ) := sup

{
m∑
i=1

∣∣∣ψ(xi)− ψ(xi−1)
∣∣∣ : 0 = x0 < x1 < · · · < xm = 1

}
,

où 0 = x0 < x1 < · · · < xm = 1, représente une subdivision quelconque de [0, 1].

Dans cette partie, nous allons calculer la dimension de Hausdorff du graphe d’une fonction à
variation bornée. Pour cela, nous avons au préalable besoin de plusieurs lemmes.

Lemme 3.1. Soient E et F deux parties d’espaces vectoriels X et Y (normés par |.|) et ψ : E → F
une application surjective telle que :

∃C > 0, ∀x, y ∈ E, |ψ(x)− ψ(y)| ≤ C|x− y|.

Alors :
Hs(F ) ≤ CsHs(E).
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Démonstration. Montrons que pour tout U ⊆ X, on a : |ψ(U ∩ E)| ≤ C|U |.

|ψ(U ∩ E)| := sup{|α− β| : α, β ∈ ψ(U ∩ E)}
= sup{|ψ(x)− ψ(y)| : x, y ∈ U ∩ E}
≤ C sup{|x− y| : x, y ∈ U ∩ E}
≤ C sup{|x− y| : x, y ∈ U}
= C |U |.

Donc si (Ui)i∈I est un δ-recouvrement de E, c’est-à-dire que : E ⊂
⋃
i∈I

Ui et |Ui| ≤ δ, (∀i ∈ I),

alors, comme ψ est surjective, on a : F ⊂ ψ(E), d’où :

F ⊂ ψ(E) ⊂
⋃
i∈I

ψ(Ui ∩ E),

et pour chaque i ∈ I :
|ψ(Ui ∩ E)| ≤ Cδ.

Donc (ψ(Ui ∩ E))i∈I est un Cδ-recouvrement de F .
De plus,

Hs
Cδ(F ) ≤

∑
i∈I

|ψ(Ui ∩ E)|s ≤ Cs
∑
i∈I

|Ui|s,

donc en passant à l’infimum sur tous les recouvrements de E, il vient :

Hs
Cδ(F ) ≤ CsHs

δ(E).

En passant à la limite δ → 0+, il vient :

Hs(F ) ≤ CsHs(E).

Dans le second lemme, nous avons besoin de définir la notion de courbe :

Définition 3.2. (Courbe)
On dit que Λ est une courbe s’il existe une paramétrisation de Λ notée γ : [a, b] → R2 qui est
continue et injective.

Lemme 3.2. Si Λ est une courbe, alors H1(Λ) = L(Λ).

Démonstration. Notons z et w les deux points délimitant les extrémités de la courbe Λ. On note Pd
la projection orthogonale de R2 sur la droite d passant par z et w. On sait que Pd est 1-lipschitzienne
donc :

|Pd(x)− Pd(y)| ≤ |x− y|, ∀x, y ∈ R2.
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L’application de projection est surjective, donc on peut utiliser le lemme 3.1, ainsi :

H1(Λ) ≥ H1(Pd(Λ))

= L([z, w])

= |z − w|.

Maintenant on suppose que Λ est paramétrisée par ψ : [0, 1] → R2. D’après le calcul précédent,
on remarque que pour tout t, u ∈ [0, 1] :

H1(ψ([t, u])) ≥ |ψ(t)− ψ(u)|.
Soit 0 = t0 < t1 < · · · < tm = 1, une subdivision quelconque de [0, 1], alors :

m∑
i=1

|ψ(ti)− ψ(ti−1)| ≤
m∑
i=1

H1(ψ([ti−1, ti]))

= H1(Λ),

puisque les arcs ψ([ti−1, ti]) de Λ sont disjoints sauf pour les extrémités. Donc L(Λ) ≤ H1(Λ).
Il reste à montrer l’autre inégalité. Si L(Λ) = +∞, la partie précédente montre que H1(Λ) = +∞.
On peut donc supposer que L(Λ) < +∞. Soit σ une paramétrisation par longueur d’arc (1) de Λ.
La fonction σ est surjective de [0,L(Λ)] vers Λ. De plus, pour tout 0 ≤ t1 ≤ t2 ≤ L(Λ), on a :

|σ(t1)− σ(t2)| ≤ (t2 − t1).

En effet, t2 − t1 = L(σ([0, t2])) − L(σ([0, t1])) et L(σ([0, t2])) = L(σ([0, t1])) + L(σ([t1, t2])). On
trouve ainsi :

t2 − t1 = L(σ([t1, t2]))

≥ |σ(t2)− σ(t1)|,
car t1 < t2 est une subdivision particulière de [t1, t2].
On peut donc appliquer le lemme 3.1 pour affirmer que :

H1(Λ) = H1(σ([0,L(Λ)])) ≤ H1([0,L(Λ)]) = L(Λ).

On peut donc conclure cette partie avec le théorème suivant :

Théorème 3.1. Si f : [0, 1]→ R est une fonction continue et à variation bornée, alors dim(Γ) =
1, où Γ représente le graphe de f .

Démonstration. On définit F : [0, 1] → R2 par F (t) := (t, f(t)) pour tout t ∈ [0, 1]. Comme
f est continue et à variation bornée, on en déduit que F est également continue et à variation
bornée. On en déduit ainsi que L(Λ) < +∞. Le lemme 3.2 montre que H1(Λ) = L(Λ), donc
0 < H1(Λ) = H1(Γ) < +∞, donc dim(Γ) = 1.

Cependant, si f est suffisamment irrégulière (même en restant continue), il est possible que Γ
ait une dimension de Hausdorff supérieure à 1. Dans de tels cas, il peut être difficile de calculer
la dimension de Hausdorff de Γ à partir de la simple connaissance de f . Nous allons donc étudier
quelques cas particuliers.

(1). voir Introduction à la géométrie de Pascal Dupont (De Boeck, Bruxelles, 2002)
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3.2 Condition de Hölder

Théorème 3.2. Soient s > 1 et f : [0, 1]→ R telle que :

∃h0, c > 0, ∀x ∈ [0, 1], ∀ 0 < h < h0, |f(x+ h)− f(x)| ≤ ch2−s,

où l’on a prolongé la fonction f par f(1) pour x ≥ 1. Alors :

Hs(Γ) < +∞.

Remarque 3.1. La condition sur f du théorème ci-dessus est appelée condition de Hölder. Elle
permet d’obtenir une borne supérieure sur la dimension de Hausdorff de Γ.

Démonstration. Soit I un intervalle sur l’axe des abscisses de longueur h < h0. Par définition,

|f(I)| = sup{|f(y)− f(x)| : x, y ∈ I}.

Mais f est continue donc d’après le théorème des valeurs intermédiaires, f(I) est un intervalle
donc :

L(f(I)) = |f(I)| ≤ ch2−s.

Ainsi l’ensemble {(x, f(x)) : x ∈ I} peut être recouvert par m :=
⌊
h−1ch2−s⌋+ 1 carrés de côté h,

notés CI
i pour 1 ≤ i ≤ m. On effectue ensuite une subdivision régulière de [0, 1] en m parties égales

de longueur h =
1

m
< h0. Il s’agit d’une subdivision particulière de [0, 1]. De plus, le diamètre

des carrés CI
i (pour 1 ≤ i ≤ m) de taille h est égal à

√
2h (d’après le théorème de Pythagore) et

Γ ⊆
⋃
I∈Γ

m⋃
i=1

CI
i . Donc par définition de l’infimum, il vient :

Hs√
2h

(Γ) ≤
∑
I∈Γ

( m∑
i=1

|CI
i |s
)

(h−1ch2−s + 1)

≤ m(
√

2h)s(h−1ch2−s + 1)

= m2s/2ch+m2s/2hs

=
1

h
2s/2ch+

1

h
2s/2hs

= css/2(1 + c−1hs−1)

≤ c 21+s/2,

pour h suffisamment petit car s > 1.
Donc Hs√

2h
(Γ) ≤ c 21+s/2 pour h petit. On peut donc faire tendre h vers 0+ dans l’inégalité

précédente pour avoir :
Hs(Γ) ≤ c 21+s/2 < +∞.
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3.3 Fonctions à fortes oscillations

Un moyen naturel d’obtenir une fonction dont le graphe a une structure plus fine est d’additionner
une suite de fonctions qui oscillent de plus en plus rapidement. Ainsi si (ai)i∈N∗ est une suite
sommable et si (λi)i∈N∗ est une suite qui tend vers +∞, alors la fonction φ définie par une série
trigonométrique

φ(x) :=
+∞∑
i=1

ai sin(λix), ∀x ∈ R

pourrait avoir un graphe de dimension de Hausdorff supérieure à 1 si on choisit attentivement les
ai et les λi pour i ∈ N∗. Nous allons introduire la fonction de Weierstrass.

Définition 3.3. (Fonction de Weierstrass)
Soient 1 < s < 2 et λ > 1. Pour tout x ∈ R on définit W par :

W (x) :=
+∞∑
i=1

λ(s−2)i sin(λix).

Remarque 3.2. Cette fonction est continue partout mais dérivable nulle part. Un récent article (2),
datant du 11 octobre 2017, a réussi à montrer que la dimension de son graphe vaut exactement s.
Une variante de la fonction de Weierstrass est la fonction :

h(x) :=
+∞∑
i=−∞

λ(s−2)i(1− cos(λix)),

introduite par Mandelbrot en 1977.

Proposition 3.1. Pour tout x ∈ R,

h(λx) = λ2−sh(x).

Démonstration.

h(λx) =
+∞∑
i=−∞

λ(s−2)i(1− cos(λi(λx)))

=
+∞∑
i=−∞

λ(s−2)i(1− cos(λi+1x))

=
+∞∑
i=−∞

λ(s−2)(i−1)(1− cos(λix))

= λ2−sh(x).

(2). voir Hausdorff dimension of the graphs of the classical Weierstrass functions - Mathematische Zeitschrift
volume 289, pages 223–266 (2018) de Weixiao Shen
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A nouveau la dimension du graphe de h est s. En 1980, Berry et Lewis ont réalisé des simulations
numériques de ces fonctions pour des applications physiques. Pour faciliter le calcul, il est pratique
de remplacer les fonctions sinus par des fonctions périodiques légèrement différentes :

Définition 3.4. (La fonction "Zig-Zag")
On définit la fonction g sur R par :

g(4k + y) =


y si 0 ≤ y < 1,
2− y si 1 ≤ y < 3,
y − 4 si 3 ≤ y < 4,

pour k ∈ Z et y ∈ [0, 4[. Cette fonction est donc 4-périodique par définition.

Figure 3.1 – Graphe de la fonction g sur [0, 12].

Remarque 3.3. On remarque que pour tout x ∈ R−Z, on a |g′(x)| = 1 et pour tout x ∈ R, on a
|g(x)| ≤ 1. Afin de présenter une preuve complète et raisonnable, nous allons étudier les fonctions :

f(x) :=
+∞∑
i=1

ai g(λix),

à la place des fonctions précédentes.

En 1937, Besicovitch et Ursell ont trouvé (3) la dimension de Hausdorff de la fonction précédente.
Ce résultat est résumé dans le théorème suivant :

(3). voir Sets of fractional dimension (V) : On dimensional numbers of some continuous curves, J. London Math.
Soc. 12(1937), 18-25 de Besicovitch et Ursell
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Théorème 3.3. Soit (λi)i∈N∗ une suite de nombres positifs vérifiant les propriétés suivantes :

—
(λi+1

λi

)
i∈N∗

est croissante,

—
λi+1

λi
−→
i→+∞

+∞,

—
log(λi+1)

log(λi)
−→
i→+∞

1.

et soit Γ le graphe de la fonction f définie par

f(x) :=
+∞∑
i=1

λs−2
i g(λix),

pour x ∈ [0, 1] et 1 < s < 2.
Alors dim(Γ) = s.

Pour démontrer ce théorème, nous avons besoin de plusieurs résultats :

Lemme 3.3. Il existe N ∈ N tel que pour tout k ≥ N , on a :

k∑
i=1

λs−1
i ≤ 2λs−1

k ,

et
+∞∑
i=k+1

λs−2
i ≤ 2λs−2

k+1,

avec les λi et le s défini dans l’énoncé du théorème 3.3.

Démonstration. Nous allons tout d’abord démontrer la première inégalité. Comme
(λi+1

λi

)s−1

−→

+∞, il existe k1 ∈ N tel que pour tout i ≥ k1, on a
(λi+1

λi

)s−1

≥ 3. Ainsi pour k1 ≤ j ≤ k, il vient

par récurrence immédiate λs−1
j ≤ 3k−jλs−1

k . On a donc :

k∑
i=1

λs−1
i =

k1−1∑
i=1

λs−1
i +

k∑
i=k1

3k−iλs−1
k

=

k1−1∑
i=1

λs−1
i + λs−1

k

k−k1∑
j=0

3−j

≤
k1−1∑
i=1

λs−1
i + λs−1

k

1

1− 1

3

=

k1−1∑
i=1

λs−1
i +

3

2
λs−1
k .
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En divisant l’inégalité précédente par λs−1
k 6= 0, il vient :∑k

i=1 λ
s−1
i

λs−1
k

≤
∑k1−1

i=1 λs−1
i

λs−1
k

+
3

2
−→
k→+∞

3

2
< 2.

Il existe donc k2 ∈ N tel que pour tout k ≥ k2, on a :

k∑
i=1

λs−1
i ≤ 2λs−1

k .

Nous allons maintenant montrer la deuxième inégalité du lemme. Comme s − 2 < 0, on a(λi+1

λi

)s−2

−→ 0, et il existe k3 ∈ N tel que pour tout i ≥ k3, on a
(λi+1

λi

)s−2

≤ 1

2
. Ainsi

pour k3 ≤ j ≤ i, il vient par récurrence immédiate λs−2
i ≤

(1

2

)i−j
λs−1
j . On a donc pour tout

k ≥ k3 :
+∞∑
i=k+1

λs−2
i ≤ λs−2

k+1

+∞∑
i=k+1

(1

2

)i−k−1

≤ 2λs−2
k+1.

Il suffit donc de poser N := max(k2, k3) pour avoir les deux inégalités souhaitées.

Remarque 3.4. Il est intéressant de remarquer que la mesure de Lebesgue dans R2 du graphe
d’une fonction est toujours nulle. Ce qui n’est pas toujours le cas pour la mesure s-dimensionnelle
de Hausdorff (pour 1 < s < 2).

Proposition 3.2. Soit I ⊆ R un intervalle quelconque et soit g : I → R une fonction mesurable.
Notons Γ le graphe de g. Alors L2(Γ) = 0.

Démonstration. On applique le théorème de Fubini pour avoir :

L2(Γ) =

ˆ
R2

χΓ =

ˆ
R
dy

ˆ
{x∈R : (x,y)∈Γ}

1 dx.

Mais l’ensemble {y ∈ R : (x, y) ∈ Γ} possède au plus un seul élément, donc il est en particulier
de mesure nulle. Donc l’intégrale correspondante est nulle également. Ainsi L2(Γ) = 0.

Lemme 3.4. Soient 0 < t < s et a > 0. Alors :

λtk+1

λ
(s+t)/2
k

−→
k→+∞

0,

et
6ak

λ
(s−t)/2
k

−→
k→+∞

0,

avec les λi et le s défini dans l’énoncé du théorème 3.3.
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Démonstration. Nous allons commencer par déterminer la première limite. On considère des quan-
tités strictement positives donc on peut passer au logarithme :

log

(
λtk+1

λ
(s+t)/2
k

)
= t log(λk+1)− s+ t

2
log(λk)

= log(λk)

[
t

log(λk+1)

log(λk)
− s

2
− t

2

]
∼

+∞

log(λk)

2
(t− s),

car
log(λk+1)

log(λk)
−→
k→+∞

1, par hypothèse. Comme t−s < 0, on en déduit que log

(
λtk+1

λ
(s+t)/2
k

)
−→
k→+∞

−∞,

donc
λtk+1

λ
(s+t)/2
k

−→
k→+∞

0.

Nous allons maintenant déterminer la seconde limite. Par hypothèse,
λk
λk−1

−→
k→+∞

+∞ et comme

s− t
2

> 0, on a
(

λk
λk−1

)(s−t)/2

−→
k→+∞

+∞. Ainsi il existe N ∈ N tel que pour tout k ≥ N , on a(
λk
λk−1

)(s−t)/2

≥ 7a. Par récurrence immédiate, il vient λ(s−t)/2
k ≥ 7akλ

(s−t)/2
1 . Donc :

6ak

λ
(s−t)/2
k

≤ 6ak

7akλ
(s−t)/2
1

=

(
6

7

)ak
1

λ
(s−t)/2
1

−→
k→+∞

0.

Lemme 3.5. Soit k ∈ N∗ avec k ≥ N , où N est donné dans le lemme 3.3. On pose h := λ−1
k . Soit

S un carré de côté h parallèle aux axes des coordonnées. On note I l’intervalle de projection de S
sur l’axe des abscisses. On pose pour tout x ∈ [0, 1] :

fk(x) :=
k∑
i=1

λs−2
i g(λix),

où les λi, le s et la fonction g sont définis dans le théorème 3.3. Alors f ′k change de signe au plus
une fois sur l’intervalle I.

Démonstration. Par définition de la fonction g, on a :

g′(y) =


1 si y ∈

⋃
l∈Z

]4l − 1, 4l + 1[,

−1 si y ∈
⋃
l∈Z

]4l + 1, 4l + 3[.
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En séparant la somme partielle de f en deux parties, on obtient :

fk(x) = λs−2
k g(λkx) +

k−1∑
i=1

λs−2
i g(λix).

Posons pour tout x ∈ R, φk(x) := λs−2
k g(λkx). On a alors :

φ′k(x) =


λs−1
k si x ∈ 4l

λk
+ Jk (l ∈ Z),

−λs−1
k si x ∈ 4l + 2

λk
+ Jk (l ∈ Z),

où Jk :=

]
− 1

λk
,

1

λk

[
. Pour tout x ∈ j

2

λk
+ Jk (avec j ∈ Z), on a : φ′k(x) = (−1)jλs−1

k . Par

hypothèse, on a |I| = h = λ−1
k =

1

2
|Jk|. Il existe donc au plus deux entiers consécutifs que l’on

note j et j + 1 tels que :

I ⊆
(
j

2

λk
+ Jk

) ⋃ (
(j + 1)

2

λk
+ Jk

)
.

On pose I1 := j
2

λk
+ Jk et I2 := (j + 1)

2

λk
+ Jk. On a alors :

φ′k(x) =

{
(−1)jλs−1

k sur
◦
I1,

(−1)j+1λs−1
k sur

◦
I2.

Ainsi sur
◦
I1, on a :

f ′k(x) = (−1)jλs−1
k +

k−1∑
i=1

λs−1
i g′(λix).

On observe que : ∣∣∣∣ k−1∑
i=1

λs−1
i g′(λix)

∣∣∣∣ ≤ k−1∑
i=1

λs−1
i

(∗) ≤ 2λs−1
k−1

< λs−1
k ,

où (∗) provient directement du lemme 3.3. Ce résultat est valable pour k ≥ N donné par le lemme
3.3.
On a donc sur

◦
I1, le fait que :

signe(f ′k(x)) = signe((−1)j).

De même sur
◦
I2, on a :

signe(f ′k(x)) = signe((−1)j+1).
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Nous allons maintenant démontrer le théorème 3.3.

Démonstration. (Théorème 3.3)

[Étape 1 : Montrons que Hs(Γ) < +∞.]

Soit k ∈ N∗. On choisit h tel que : λ−1
k+1 ≤ h ≤ λ−1

k+1 (possible car la suite
(λi+1

λi

)
i
est croissante).

Alors :

|f(x+ h)− f(x)| =
∣∣∣∣ +∞∑
i=1

λs−2
i g(λi(x+ h))−

+∞∑
i=1

λs−2
i g(λix)

∣∣∣∣
≤

+∞∑
i=1

λs−2
i |g(λi(x+ h))− g(λix)|

=
k∑
i=1

λs−2
i |g(λi(x+ h))− g(λix)|

+
+∞∑
i=k+1

|g(λi(x+ h))− g(λix)|

≤
k∑
i=1

λs−2
i |g(λi(x+ h))− g(λix)|+ 2

+∞∑
i=k+1

λs−2
i

(∗) ≤
k∑
i=1

λs−2
i |λi(x+ k)− λix|+ 2

+∞∑
i=k+1

λs−2
i

= h
k∑
i=1

λs−1
i + 2

+∞∑
i=k+1

λs−2
i

(∗∗) ≤ 2hλs−1
k + 4λs−2

k+1,

pour k suffisamment grand, où (∗) est conséquence de l’inégalité des accroissements finis pour les
fonctions lipschitziennes et (∗∗) provient directement du lemme 3.3.
On suppose donc k assez grand (ainsi h va être petit). Par définition de h, on a λ−1

k+1 ≤ h ≤ λ−1
k ,

donc :
λs−2
k+1 =

(
λ−1
k+1

)2−s ≤ h2−s, car 2− s > 0,

et
λs−1
k =

(
λ−1
k

)1−s ≤ h1−s, car 1− s < 0.

Ainsi :
|f(x+ h)− f(x)| ≤ 2hh1−s + 4h2−s

= 2h2−s + 42−s

= 6h2−s.

Pour tout k ≥ N (N défini dans le lemme 3.3) et pour tout h réel avec λ−1
k+1 ≤ h ≤ λ−1

k , on a
|f(x+h)− f(x)| ≤ 6h2−s. Il existe donc h0 > 0 tel que pour tout h ≤ h0, on a |f(x+h)− f(x)| ≤
6h2−s et d’après le théorème 3.2, on en déduit que Hs(Γ) < +∞.

[Étape 2 : Montrons que pour tout 0 < t < s, on a 0 < Ht(Γ).]
Cette étape nécessite davantage de travail. Soit S un carré, avec des côtés de longueur h > 0,
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parallèle aux axes des coordonnées. Soit I l’intervalle de projection de S sur l’axe des abscisses.
D’après la proposition 3.2, la mesure de Lebesgue de l’ensemble

E := {x ∈ R : (x, f(x)) ∈ S} ⊆ R,

est nulle. On définit les sommes partielles

fk(x) :=
k∑
i=1

λs−2
i g(λix),

pour tout x ∈ R.
Comme la suite

(λi+1

λi

)
i
tend vers +∞, on peut supposer que l’on dispose d’un k suffisamment

grand afin d’avoir les inégalités 2 ≤ 2λk ≤ λk+1. Dans ce cas, pour tout x ∈ R :

|f(x)− fk(x)| =
∣∣∣∣ +∞∑
i=k+1

λs−2
i g(λix)

∣∣∣∣
(∗) ≤

+∞∑
i=k+1

λs−2
i

(∗∗) ≤ 2λs−2
k+1,

(3.1)

où (∗) provient du fait que |g| ≤ 1 et (∗∗) du lemme 3.3. De plus, pour tout x ∈ R où fk est
dérivable, on a :

|f ′k(x)| =
∣∣∣∣ k∑
i=1

λs−1
i g′(λix)

∣∣∣∣
≥ λs−1

k −
k−1∑
i=1

λs−1
i

≥ 1

2
λs−1
k ,

(3.2)

d’après le lemme 3.3 et par le fait que |g′| ≤ 1.
Supposons tout d’abord que le carré S a un côté h := λ−1

k . Soit m ∈ N∗ tel que :

λs−2
k+m ≤ h := λ−1

k ≤ λs−2
k+m−1. (3.3)

Il est important de noter que m dépend de k par définition. On observe que trouver un tel m est

possible car la suite
(λi+1

λi

)
i
tend vers +∞ et s − 2 < 0. Comme la suite

(λi+1

λi

)
i
est croissante,

on a :
∀i ∈ [[1,m− 1]],

λk+1

λk
≤ λk+i

λk+i−1

.

Donc, comme les λi sont positifs, il vient :
m−1∏
i=1

λk+1

λk
<

m−1∏
i=1

λk+i

λk+i−1

,

c’est-à-dire : (λk+1

λk

)m−1

λk < λk

m−1∏
i=1

λk+i

λk+i−1

.
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Comme 2− s > 0, on obtient :(λk+1

λk

)(m−1)(2−s)
λ2−s
k <

(λk+m−1

λk+m−2

· · · λk+1

λk
λk

)2−s

= λ2−s
k+m−1

< λk,

car λ−1
k < λs−2

k+m−1. On obtient finalement :(λk+1

λk

)(m−1)(2−s)
< λkλ

s−2
k

= λs−1
k

=
( λk
λk−1

· · · λ2

λ1

)s−1

<
(λk+1

λk

)(k−1)(s−1)

λs−1
1 ,

par croissance de la suite
(λi+1

λi

)
i
. En passant au logarithme dans l’inégalité précédente, nous

allons ainsi montrer qu’il existe une constante a > 0 (indépendante de k) telle que m ≤ ak. On
rappelle que m dépend de k par construction. On obtient :

(m− 1)(2− s) log
λk+1

λk
< (k − 1)(s− 1) log

λk+1

λk
+ log

(
λs−1

1

)
.

On réordonne l’inégalité précédente pour obtenir :

m

k
<
s− 1

2− s
+

3− 2s

k(2− s)
+

log
(
λs−1

1

)
k(2− s) log

(λk+1

λk

) .
En passant à la limite k → +∞, les deux derniers termes du membre de droite de l’inégalité
précédente tendent vers 0, donc :

lim
k→+∞

m

k
≤ s− 1

2− s
.

Donc la suite
(m
k

)
k
est bornée par une constante indépendante de k.

[Cas 1 : m = 1]
D’après (3.1), si (x, f(x)) ∈ S alors (x, fk(x)) ∈ R1, où R1 est le rectangle obtenu en rajoutant
une longueur 2λs−2

k+1 ≤ 2h en haut et en bas de S. D’après le lemme 3.5, f ′k change de signe au plus
une fois sur I, donc le graphe de fk ne peut pas sortir du carré S plus d’une fois. D’après (3.2),

sur chaque intervalle où f ′k est de signe constant, on a : |f ′k(x)| ≥ 1

2
λs−1
k .

Ainsi (x, fk(x)) ∈ R1 pour x dans un intervalle de longueur au plus
1

1

2
λs−1
k

= 2λ1−s
k fois la hauteur

de R1. En effet, soit J ⊆ I un intervalle tel que pour tout x ∈ J , on a (x, fk(x)) ∈ R1, alors :

hauteur(R1) ≥ |fk(max(J))− fk(min(J)|

=

ˆ
J

|f ′k|

≥ |J | 1
2
λs−1
k .
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Donc |J | ≤ hauteur(R1) 2λ1−s
k . De plus,

hauteur(R1) = h+ 2(2λs−2
k+1) ≤ h+ 4h = 5h.

Et comme il y a au plus deux intervalles J vérifiant les propriétés précédentes, on en déduit que :

L1(E) ≤ 2(5h)(2λ1−s
k )

= 20λ−1
k λ1−s

k

= 20λ−sk
= 20hs.

[Cas 2 : m > 1]
On peut diviser I en au plus deux intervalles J1 et J2, où f ′k est de signe constant sur J1 et sur
J2. D’après (3.3), la hauteur de R1 est : h + 2(2λs−2

k+1) ≤ 5λs−2
k+1. Donc sur chaque intervalle Ji

(i ∈ {0, 1}), on considère les sous intervalles Ki définis par Ki := proj(Ox)(E)∩ Ji. Pour i ∈ {0, 1},
on a :

|Ki| = 2λ1−s
k 5λs−2

k+1.

On divise chaque Ki (i ∈ {0, 1}) en plusieurs parties où f ′k+1 est de signe constant sur chacune de

ces parties. On obtient au plus (2λ1−s
k 5λs−2

k+1) 2
1

4λ−1
k+1

+ 1 nouveaux intervalles au sein de chaque

Ki (i ∈ {0, 1}). En effet, le terme
1

4λ−1
k+1

correspond à l’inverse de la période de la fonction

x 7→ g(λk+1x). On observe que :

(2λ1−s
k 5λs−2

k+1)
1

2
λk+1 + 1 = 5λ1−s

k λs−1
k+1 + 1

= 5

(
λk+1

λk

)s−1

+ 1

≤ 6

(
λk+1

λk

)s−1

.

[Cas 3 : m > 2]
On répète le processus sur chacun des intervalles précédents. D’après ce qui précède, il y aura

au plus 6

(
λk+2

λk+1

)s−1

nouveaux intervalles sur lesquels f ′k+2 est de signe constant. En répétant ce

processus m− 2 fois, on remarque que l’ensemble E est recouvert par au plus :

2 · 6m−1

(
λk+1

λk

λk+2

λk+1

· · · λk+m−1

λk+m−2

)s−1

= 2 · 6m−1

(
λk+m−1

λk

)s−1

,

intervalles sur lesquels f ′k+m−1 est de signe constant. D’après (3.1), (x, f(x)) ∈ S lorsque (x, fk+m−1(x)) ∈
R2, où R2 est le rectangle formé en augmentant S d’une longueur 2λs−2

k+m au dessus et en dessous.
On utilise (3.3) pour affirmer que : hauteur(R2) = h+ 2(2λs−2

k+m) ≤ 5h. Ainsi :

L1(E) ≤ 2 · 6m−1

(
λk+m−1

λk

)s−1

(2λ1−s
k+m−1) 5h,

car chaque intervalle (lors de la dernière étape) a une longueur plus petite que 2λ1−s
k+m−1 fois la

hauteur de R2. Ce résultat se démontre d’une manière analogue au cas 1. On trouve ainsi :
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L1(E) ≤ 2 · 6m−1

(
λk+m−1

λk

)s−1

5h · 2λ1−s
k+m−1

= 20 · 6m−1λ1−s
k h

= 20 · 6m−1λ1−s
k λ−1

k

= 20 · 6m−1hs

≤ 20 · 6akhs,

puisque l’on a m − 1 ≤ m ≤ ak. Soit 0 < t < s, on suppose maintenant que λ−1
k+1 < h ≤ λ−1

k .
Ainsi :

L1(E) ≤ 20 6akλ−sk = 20λ−tk+1

λtk+1

λ
(s+t)/2
k

6ak

λ
(s−t)/2
k

.

On applique le lemme 3.4 qui assure que les deux facteurs à droite tendent vers 0, donc il existe
C1 > 0 tel que L1(E) ≤ C1

(
λ−1
k+1

)t, pour k assez grand. Et comme λ−1
k+1 < h ≤ λ−1

k , il vient :

L1(E) ≤ C1h
t. (3.4)

Soit (Ui)i∈N un δ-recouvrement quelconque de Γ, avec δ > 0 assez petit. Pour tout i ∈ N, on choisit
un carré Si (4) tel que :

— Ui ⊆ Si,
— Si a ses côtés de longueur |Ui|,
— Si est parallèle aux axes de coordonnées.

Figure 3.2 – Recouvrement du graphique de la fonction f avec les carrés pour s = 1.2.

(4). voir schéma explicatif
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Soit 0 < t < s, on a :
+∞∑
i=0

|Ui|t =
+∞∑
i=0

(
√

2)t |Si|t,

où on définit pour tout i ∈ N, l’ensemble Ei := {x : (x, f(x)) ∈ Si}. D’après la formule (3.4) avec
h = (

√
2)−1|Si| et E = Ei (pour chaque i ∈ N), il vient :

+∞∑
i=0

|Ui|t ≥
+∞∑
i=0

L1(Ei)

C1

≥ C−1
1 > 0,

car [0, 1] ⊂
+∞⋃
i=0

Ei, donc
+∞∑
i=0

L1(Ei) ≥ L1([0, 1]) = 1. Finalement, en passant à l’infimum sur tous

les δ-recouvrements de Γ, il vient Ht
δ(Γ) ≥ C1 > 0. Et comme δ > 0 est arbitraire, il vient donc

Ht(Γ) ≥ C1 > 0.
Ce résultat combiné au résultat de l’étape 1 montre ainsi que dim(Γ) = s.

Pour conclure ce chapitre, nous allons afficher le graphe Γ de la fonction f étudiée dans le théorème
précédent pour différente valeurs de s. Le résultat obtenu est cohérent avec le théorème !

Figure 3.3 – Graphe de la fonction f pour s = 1.01.
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Figure 3.4 – Graphe de la fonction f pour s = 1.5.

Figure 3.5 – Graphe de la fonction f pour s = 1.99.
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Chapitre 4

Autour de la conjecture de Kakeya

Dans le présent chapitre nous allons nous attacher à décrire des ensembles intéressants à l’aide
de la mesure de Hausdorff. Cela pouvant donner un aperçu du comportement de cet outil vis à vis
d’une classe de parties de mesure extérieure de Lebesgue potentiellement petite, voire nulle.

L’histoire de ces ensembles est liée à deux mathématiciens principalement : le Russe Abram
Besicovitch, et le Japonais Soichi Kakeya ; il n’est donc pas étonnant qu’ils aient laissé leurs noms
à la plupart des objets qui vont être ici en jeu, cela même lorsqu’ils n’en sont pas vraiment à
l’origine.

Tout commence en 1917 [8] avec une question de M. Kakeya : ” A quel point peut-on minimiser
l’aire balayée par une aiguille lors d’une rotation de 180° ? ”. Mathématiquement le problème
devient : ”Quelle est la mesure de Lebesgue minimale possible pour une partie de R2 contenant un
segment de longueur unité dans chaque direction ? ”. La réponse sera apportée par Besicovitch en
1928 [8], cette aire peut être prise aussi petite que désirée, et même, nulle. Ici nous ne détaillerons
pas la construction de tels ensembles, celle-ci étant détaillée en plusieurs endroits tels que [2] ou
[8] où il est fait usage des arbres de Perron.

Depuis, le problème s’est considérablement généralisé, donnant lieu à de nouvelles questions.
Désormais on ne se limite plus à des parties de R2 mais bien de Rn, et plus à de "simples"
segments, mais bien à des sous espaces vectoriels quelconques. En ce qui nous concerne, nous
allons bien observer des parties de Rn, mais nous allons nous contenter des segments unité.

Définition 4.1. (Ensemble de Besicovitch)
Nous appellerons Ensemble de Besicovitch de Rn, toute partie de Rn contenant un segment unité
fermé dans chaque direction de Sn−1.

Le contexte étant posé, nous allons nous intéresser à la conjecture suivante :

Conjecture 4.1. (De Kakeya)
Tout ensemble de Besicovitch de Rn est de dimension de Hausdorff égale à n.

Remarque 4.1. Cette dernière a été démontrée comme vraie pour n = 2 en 1971, pour n > 2
elle reste non résolue à ce jour. Une résolution possible repose sur une préconjecture, la conjecture
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de la fonction maximale de Kakeya, elle aussi démontrée pour n = 2 uniquement, et impliquant la
conjecture de Kakeya.

Dans la suite nous nous proposons de démontrer quelques résultats élémentaires de la théorie
des fonctions maximales, puis d’introduire la conjecture de la fonction maximale de Kakeya, dé-
montrer qu’elle implique bien la conjecture de Kakeya, et finalement utiliser cette implication pour
démontrer le cas n = 2.

4.1 Préliminaires sur les fonctions maximales

Dans cette section nous allons devoir passer par plusieurs résultats de recouvrement pour en
arriver aux fonctions maximales. Nous nous plaçons dans (Rn, ‖.‖2) muni de la mesure de Lebesgue
car il s’agit du cadre de la conjecture de Kakeya, mais nous faisons remarquer au lecteur que les
résultats évoqués, ainsi que les raisonnements utilisés restent valables dans un espace métrique
muni d’une mesure doublante.

Nous commençons par trois lemmes fidèles à l’intuition qui nous permettrons d’aboutir à un
théorème de recouvrement dit ”5R”.

Si B désigne une boule de Rn (ouverte ou fermé), r(B) désignera son rayon. Lorsqu’une collec-
tion de boules sera choisie, ses éléments seront supposés toutes ouvertes sans que l’on soit amené à
le préciser, mais les résultats restent valables pour les boules fermées en passant d’inégalité stricte
à large.

Lemme 4.1. Soit B une collection de boules deux à deux disjointes, de réunion bornée, et telle
que inf

B∈B
r(B) > 0. Alors B est de cardinal fini.

Démonstration. Supposons que B soit un ensemble infini. On construit alors (Bk)k>0 une suite
d’éléments de B deux à deux distincts. Posons (xk)k>0 la suite des centres de ces boules, indicées
de même. Enfin notons δ := inf

B∈B
r(B) > 0.

Remarquons alors que l’on a ‖xj − xk‖ > δ dès que j est différent de k. En effet, dans le cas
contraire on aurait ‖xj − xk‖ ≤ δ 6 r(Bj) et donc xk ∈ Bj et ainsi xk ∈ Bj ∩ Bk = ∅. Cela
étant, (xk)k>0 ne peut admettre de valeur d’adhérence, ce qui contredit le théorème de Bolzano
Weierstrass, cette suite étant bornée.

Lemme 4.2. Soit B une collection de boules, E une partie de Rn, R un réel strictement positif.
Supposons enfin que inf

B∈B
r(B) > 0. Alors il existe B′ ⊂ B fini, constitué de boules deux à deux

disjointes, disjointes de E, contenues dans B(0, R), et qui soit maximale pour ces propriétés.

Démonstration. Si B = ∅, B′ = ∅ convient. Sinon on itère le processus suivant :
Tant qu’il reste dans B un élément disjoint de E , disjoint des éléments de B′, et inclus dans

B(0, R), on l’ajoute à B′.
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On construit ainsi un ensemble au plus dénombrable de boules, en effet lors du processus on
peut associer chaque boule à un entier. Mais cet ensemble vérifie le lemme précédent, il est donc
fini. La construction de B′ s’étant arrêtée par manque de candidat, B′ est maximale puisque sinon
cela reviendrait à trouver un nouvel élément dans B, disjoint de E et des éléments de B′.

Lemme 4.3. Soit B une collection de boules, E une partie de Rn, supposons que inf
B∈B

r(B) > 0.

Alors il existe B′ ⊂ B au plus dénombrable constitué de boules deux à deux disjointes, disjointes
de E, et qui soit maximal pour ces propriétés.

Démonstration. Si B = ∅, B′ = ∅ convient. Sinon on procède par récurrence.
D’abord par le lemme précédent on construit B′0 ⊂ B famille finie maximale de boules deux à

deux disjointes, disjointes de E, incluses dans B(0, 1).
Si B0, . . . ,Bk ont été construit, toujours par le lemme précédent, alors on construit B′k+1 ⊂ B

maximal, dont les éléments sont inclus dans B(0, 2k+1), deux à deux disjoints et disjoints de
l’ensemble E ∪ (tB′0) ∪ · · · ∪ (tB′k).

Les collections (Bk)k>0 étant construites, on pose B′ = ∪k>0B′k. L’ensemble B′ est au plus
dénombrable, ses éléments sont deux à deux disjoints, disjoints de E par construction. L’ensemble
B′ est aussi maximale pour les propriétés citées car sinon on aurait B′′ ⊂ B tel que B′ ( B′′ où
B′′ vérifie les propriétés voulues. On pourrait alors fixer B ∈ B′′ \ B′, puis poser k ∈ N tel que
B ⊂ B(0, 2k). Observons alors la collection B′k ∪ {B}. Ses éléments sont inclus dans B(0, 2k), ne
s’intersectent pas, n’intersectent pas E par définition de B′k et B′′. Cela contredit la maximalité de
B′k

Passons maintenant au théorème de recouvrement. Si B est une boule, nous désignerons par
5B la boule de même centre que B telle que r(5B) = 5r(B).

Théorème 4.1. (dit Vitali 5R)
Soit B une famille de boules non dégénérées tel que sup

B∈B
r(B) est fini. Alors il existe B′ ⊂ B au plus

dénombrable, constitué de boules deux à deux disjointes telle que :⋃
B∈B

B ⊂
⋃
B∈B′

5B.

Démonstration. Si B = ∅, B′ = ∅ convient. Sinon posons M := sup
B∈B

r(B), ainsi M ∈]0,+∞[. On

peut alors écrire B = ∪k>0Bk avec Bk =

{
B ∈ B : r(B) ∈

]
M

2k+1
,
M

2k

]}
.

A nouveau construisons par récurrence.
Par le dernier lemme, on construit B′0 ⊂ B0 au plus dénombrable, maximale, à éléments disjoints

deux à deux.
Si B′0, . . . ,B′k sont construits, via le lemme précédent on construit B′k+1 ⊂ Bk+1 maximale, au

plus dénombrable, à éléments deux à deux disjoints ainsi que disjoints des éléments de ∪kj=0Bj, et
donc aussi de ∪kj=0B′j.

On pose alors B′ = ∪k>0B′k, ce dernier est au plus dénombrable.
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Les éléments de B′ sont deux à deux disjoints, en effet : soit B1, B2 éléments distincts de B′,
soit j, l ∈ N tel que B1 ∈ B′j et B2 ∈ B′l. Si j = l, les éléments de B′j = B′l sont disjoints deux à
deux par définition, donc B1 ∩B2 = ∅. Si j > l, par définition les éléments de B′j sont disjoints de
ceux de ∪j−1

k=0B
′
k, et donc en particulier B1 ∩B2 = ∅.

Si B ∈ B′, B ⊂ 5B donc B′ := B convient. Si B /∈ B′, alors : ∀k ∈ N, B /∈ B′k. En particulier il
existe k tel que B ∈ Bk et B /∈ B′k. B′k étant maximale, on a que les éléments de B′k ∪ {B} ne sont
pas deux à deux disjoints, ou bien que ces derniers ne sont pas disjoints de ceux de ∪k−1

j=0B′j.
Ainsi : ∃B′ ∈ ∪kj=0B′j telle que B ∩B′ = ∅.
En vue d’obtenir l’inclusion B ⊂ 5B′, commençons par comparer les rayons de ces boules. Soit

j ∈ J0, kK tel que B′ ⊂ B′j ⊂ Bj. Alors r(B′) >
M

2j+1
>

1

2

M

2k
. Or B ∈ Bk, donc r(B) 6

M

2k
, ainsi :

r(B′) >
1

2

M

2k
>
r(B)

2
.

Passons finalement à l’inclusion : soit x ∈ B, b le centre de B, b′ celui de B′, soit y ∈ B ∩ B′,
on a :

‖x− b′‖ 6 ‖x− b‖+ ‖b− y‖+ ‖y − b′‖ 6 r(B) + r(B) + r(B′) 6 5r(B′).

Donc x ∈ 5B′, d’où le résultat.

Ce théorème de recouvrement va s’avérer utile pour la prochaine démonstration. Ne tardons pas
d’avantages et rentrons plus avant dans le sujet.

Pour A ⊂ Rn mesurable de mesure extérieure de Lebesgue |A| et f une fonction de Rn d’inté-

grale définie sur A, nous noterons désormais
 
A

f(x)dx :=
1

|A|

ˆ
A

f(x)dx.

Définition 4.2. Soit f : Rn −→ R localement intégrable. La fonction :

Mf : Rn −→ R ∪ {+∞}

x 7→ sup
r>0

 
B(x,r)

|f |,

est appelée fonction maximale de Hardy-Littlewood de f .

Les deux propriétés phares de l’opérateur M sont la continuité L1 − L1
faible, et la continuité

Lp − Lp pour p > 1. Nous commençons par la première, la seconde s’en déduira.
Suivant le contexte, le symbole |.| désignera des valeurs absolues ou la mesure extérieure de

Lebesgue.

Théorème 4.2. (Continuité L1 − L1
faible de M)

∃c > 0, ∀f ∈ L1(Rn), ∀λ > 0, |{x ∈ Rn : Mf(x) > λ}| 6 c

λ
‖f‖1.
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Démonstration. Soit f ∈ L1(Rn) et λ > 0.
Commençons par remarquer que pour tout x de Rn on a :

 
B(x,r)

|f | 6 1

|B(x, r)|

ˆ
Rn
|f | = 1

|B(0, r)|

ˆ
Rn
|f | −→

r→+∞
0.

Ainsi on peut poser R > 0 tel que pour tout x de Rn, tout r > R,
 
B(x,r)

|f | 6 λ.

Posons E := {x ∈ Rn : Mf(x) > λ} et utilisons R pour estimer |E|. Par définition de Mf et

de E, ∀x ∈ E, ∃rx > 0,
 
B(x,rx)

|f | > λ. Mais donc par définition de R, rx 6 R pour tout x de E.

On pose alors B := {B(x, rx) : x ∈ E} recouvrement de E avec donc sup
B∈B

r(B) = sup
x∈E

rx 6 R. On
a :

∀B ∈ B,
 
B

|f | > λ. (∗)

Par théorème de recouvrement il existe B′ ⊂ B au plus dénombrable tel que ∪B∈BB ⊂ ∪B∈B′5B.
Finalement, puisque E ⊂ ∪B∈BB ⊂ ∪B∈B′5B, on est conduit à l’estimation :

|E| 6

∣∣∣∣∣ ⋃
B∈B′

5B

∣∣∣∣∣ 6 ∑
B∈B′
|5B| = 5n

∑
B∈B′
|B| <

(∗)
5n
∑
B∈B′

1

λ

ˆ
B

|f | 6 5n

λ

ˆ
Rn
|f |,

la dernière inégalité venant du caractère disjoint des éléments de B′.
Ainsi |{x ∈ Rn : Mf(x) > λ}| 6 c

λ
‖f‖L1(Rn), avec c = 5n.

Remarque 4.2. Cette inégalité fait beaucoup penser à l’inégalité de Markov, mais ne nous y
trompons pas, la démonstration de cette dernière demanderait à ce que Mf soit L1, ce qui n’est
pas le cas en général.

De cette première inégalité nous déduisons la continuité Lp − Lp de l’opérateur M pour p > 1.

Théorème 4.3. (Continuité Lp − Lp)

∀p ∈]1,+∞[, ∃Cp > 0, ‖Mf‖p 6 Cp‖f‖p.

La démonstration qui suit est inspirée de celle de [4].

Démonstration. Pour simplifier les notations, nous noterons dans cette démonstration, pour tout
f : Ω ⊂ Rn −→ R mesurable :

λf : ]0,+∞[ −→ R ∪ {+∞}
t 7→ |{x ∈ Ω : |f(x)| > t}|.

Soit p > 1 et f ∈ Lp(Rn). Commençons par une majoration de λMf , nous en déduirons le
résultat voulu.

Soit t > 0, posons gt := 1{|f |>t}f et ht := f − gt. Ainsi f = gt + ht. L’opérateur M est sous
additif puisque la valeur absolue l’est, ainsi :
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∀z > 0, {x ∈ Rn : |Mf(x)| > z} = {x ∈ Rn : |M(gt + ht)(x)| > z}
⊂ {x ∈ Rn : |Mgt(x)|+ |Mht(x)| > z}
⊂ {x ∈ Rn : |Mgt(x)| > z/2} ∪ {x ∈ Rn : |Mht(x)| > z/2}.

Donc,
∀z > 0, λMf (z) 6 λMht(z/2) + λMgt(z/2) (∗)

Or gt ∈ L1(Rn) et ht ∈ Lp+1(Rn), en effet :

ˆ
Rn
|gt| =

ˆ
{|f |>t}

|f | 6
(ˆ
{|f |>t}

1p
′
) 1

p′
(ˆ
{|f |>t}

|f |p
) 1

p

6 |{|f | > t}|
1
p′ ‖f‖p,

avec
1

p′
= 1− 1

p
et |{|f | > t}| fini car ‖f‖pp >

ˆ
{|f |>t}

|f |p > tp |{|f | > t}|.

Et,

ˆ
Rn
|ht|p+1 =

ˆ
{|f |6t}

|f |p+1 =

ˆ
{|f |6t}

tp+1

(
|f |
t

)p+1

6
ˆ
{|f |6t}

tp+1

(
|f |
t

)p
6 t

ˆ
Rn
|f |p = t‖f‖pp.

De cet état de fait découle une majoration sur λMgt et une sur λMht , on aura donc bien une
majoration de λMf via (∗). La première est directe, pour la seconde nous tâcherons d’être astucieux.

La continuité L1 − L1
faible s’applique à gt, donc on a c > 0 indépendant de t et gt tel que :

∀z > 0 , λMgt(z) 6
c

z
‖gt‖1.

Pour la seconde majoration nous n’allons pas appliquer directement ce même argument à hp+1
t ,

remarquons plutôt que nous avons l’inclusion :

{x ∈ Rn : Mht(x) > z} ⊂ {x ∈ Rn : M(|ht|p+1) > zp+1},

pour tout z > 0. En effet, si Mht(x) > z, alors pour tout r > 0,

 
B(x,r)

|ht| 6 |B(x, r)|−1

(ˆ
B(x,r)

1

)1− 1
p+1
(ˆ

B(x,r)

|ht|p+1

) 1
p+1

=

( 
B(x,r)

|ht|p+1

) 1
p+1

.

Donc en passant à la puissance p + 1 puis au supremum en r, on a (Mht)
p+1(x) 6 M(hp+1

t )(x),
donc M(hp+1

t )(x) > zp+1.
On applique alors la croissance de la mesure de Lebesgue à cette inclusion puis finalement la

continuité L1 − L1
faible de h

p+1
t , il existe donc b > 0 tel que pour tout z > 0 :

λMht(z) = |{x ∈ Rn : Mht(x) > z}| 6 |{x ∈ Rn : M(|ht|p+1)(x) > zp+1}| 6 b

zp+1

ˆ
Rn
|ht|p+1.

Posons d := b
1
p+1 pour simplifier les écritures.

L’inégalité (∗) ainsi que les deux dernières majoration permettent d’avoir, pour tout z > 0 :

λMf (z) 6
2c

z
‖gt‖1 +

(2d)p+1

zp+1
‖ht‖p+1

p+1.
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L’inégalité est en particulier vraie pour z = t > 0, mais t ayant été choisi arbitrairement, on a
donc :

∀t > 0, λMf (t) 6
2c

t
‖gt‖1 +

(2d)p+1

tp+1
‖ht‖p+1

p+1.

d’où l’on va pouvoir déduire notre résultat en estimant ‖Mf‖pp comme suit :

‖Mf‖pp =

ˆ
Rn
|Mf(x)|pdx =

ˆ
Rn
p

ˆ |Mf(x)|

0

tp−1dt dx

= p

ˆ
Rn

ˆ +∞

0

tp−11{t<|Mf(x)|}(t, x)dt dx

= p

ˆ +∞

0

tp−1

(ˆ
Rn

1{|Mf(x)|>t}(t, x)dx

)
dt

= p

ˆ +∞

0

tp−1λMf (t) dt

6 2cp

ˆ +∞

0

tp−2‖gt‖1 dt+ 2p+1dp+1p

ˆ +∞

0

t−2‖ht‖p+1
p+1 dt.

On calcule alors ces deux termes de sorte à faire apparaitre ‖f‖pp.ˆ +∞

0

tp−2‖gt‖1 dt =

ˆ +∞

0

ˆ
Rn
tp−2|f(x)|1{|f(x)|>t}(t, x)dx dt

=

ˆ
Rn
|f(x)|

ˆ +∞

0

tp−21{t<|f(x)|}(t, x)dt dx

=

ˆ
Rn
|f(x)|

ˆ |f(x)|

0

tp−2dt dx

=

ˆ
Rn

1

p− 1
|f(x)|p−1|f(x)|dx

=
1

p− 1
‖f‖pp.

Et de même :ˆ +∞

0

t−2‖ht‖p+1
p+1 dt =

ˆ +∞

0

ˆ
Rn
t2|f(x)|p+11{|f(x)|6t}(t, x)dx dt

=

ˆ
Rn
|f(x)|p+1

ˆ +∞

0

t−21{t>|f(x)|}(t, x)dt dx

=

ˆ
Rn
|f(x)|p+1

ˆ +∞

|f(x)|

1

t2
dt dx

=

ˆ
Rn
|f(x)|p+1 1

|f(x)|
dx

= ‖f‖pp.
On a donc finalement l’égalité :

‖Mf‖pp 6
(

2c
p

p− 1
+ 2p+1dp+1p

)
‖f‖pp,

telle que voulue.
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4.2 Conjecture de la fonction maximale de Kakeya

La fonction maximale de Kakeya d’une fonction de L1
loc(Rn) fait penser aux fonctions maximales de

Hardy-Littlewood en le fait qu’il s’agit d’une moyenne par l’intégrale volumique. Cependant, ici les
moyennes ne plus prises sur des boules mais des cylindres, et l’on n’observe plus le supremum sur
les tailles de boules centrées en un point voulu, mais le supremum sur tous les translatés d’un même
cylindre dont l’orientation constitue le paramètre d’entrée de la fonction maximale de Kakeya.

Notation 4.1. Soit v ∈ Sn−1, δ > 0, a ∈ Rn.

On note T δv (a) :=

{
x ∈ Rn : |〈x− a, v〉| 6 1

2
,
∥∥(x− a)⊥v

∥∥ 6 δ

}
le cylindre de direction v, hauteur

1, largeur δ.
Avec x⊥v = x− 〈x, v〉v le projeté orthogonal de x sur Rn−1 parallèlement à v.

Figure 4.1 – T 0.1
(1,0)(0) dans R2

Définition 4.3. Soit f ∈ L1
loc(Rn) et δ > 0. La fonction maximale de Kakeya de f pour δ est

définie par :
f ∗δ : Sn−1 −→ R

v 7→ sup
a∈Rn

 
T δv (a)

|f(x)| dx.

La conjecture naïve de la fonction de maximale de Kakeya s’énonce alors comme suit :

Conjecture 4.2.

∃p > 1,∀ε > 0,∃Cε > 0,∀f ∈ L1
loc(Rn),∀δ > 0, ‖f ∗δ ‖Lp(Sn−1) 6

Cε
δε
‖f‖p .

Remarque 4.3. Nous parlons ici de conjecture naïve car un contre exemple permet d’exclure
directement tous les réels p < n. Il s’agit de la fonction f = 1B(0,δ/2).
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Théorème 4.4. La conjecture ci-dessus est fausse lorsque p < n.

Démonstration. Soit p > 1. Nous noterons ωk la mesure de Lebesgue k-dimensionnelle de la boule
unité de Rk, et αk la mesure de (k − 1)-dimensionnelle de la sphère unité de Rk.

La mesure des cylindres T δv (a) ne dépend que de δ. Pour la déterminer on peut se contenter de
celle de T δe1(0) où e1 est un élément de la base canonique de Rn. Il s’agit d’intégrer la mesure des

sections du cylindre sur sa hauteur, c’est à dire ici de
(
−1

2
, 0, . . . , 0

)
à
(

1

2
, 0, . . . , 0

)
. Ces sections

sont toutes des translations du projeté orthogonal du cylindre sur Vect(e2, . . . , en) parallèlement
à e1. Le projeté étant défini comme l’ensemble des points x tels que ‖x‖ 6 δ à savoir la boule de
Rn−1 de centre 0 et de rayon δ ayant donc pour mesure δn−1ωn−1. Ainsi :

∣∣T δv (a)
∣∣ =

∣∣T δe1(0)
∣∣ =

ˆ 1/2

−1/2

δn−1ωn−1 = δn−1ωn−1.

Ce prélude notationnel et calculatoire terminé, revenons en à la contradiction de notre inégalité.
Soit δ > 0 assez petit, disons δ 6 1. Posons f = 1B(0,δ/2). Alors on a l’inclusion B(0, δ/2) ⊂

T δv (0) pour tout v ∈ Sn−1. En effet, si x ∈ B(0, δ/2) on a :

|〈x, v〉| 6 ‖x‖ ‖v‖ 6 δ

2
6

1

2
et ‖x⊥v‖ = ‖x− 〈x, v〉v‖ 6 ‖x‖+ ‖x‖ ‖v‖2 6 δ.

Par conséquent, pour tout v ∈ Sn−1, on a :

f ∗δ (v) = sup
a∈Rn

 
T δv (a)

1B(0,δ/2)(x) dx

>

∣∣B(0, δ
2
) ∩ T δv (0)

∣∣
|T δv (0)|

=

∣∣B(0, δ
2
)
∣∣

|T δv (0)|

=
(δ/2)nωn
δn−1ωn−1

=
1

2n
ωn
ωn−1

δ.

Et donc :

‖f ∗δ ‖Lp(Sn−1) >

(ˆ
Sn−1

(
1

2n
ωn
ωn−1

δ

)p
dσ(v)

) 1
p

=
1

2n
ωn
ωn−1

δα
1
p
n .

D’autre part :

‖f‖p =

∣∣∣∣B(0,
δ

2

)∣∣∣∣ 1p =

(
δn

2n

) 1
p

ω
1
p
n .

La conjecture impliquerait donc :

∀ε > 0,∃Cε > 0, ∀δ > 0,
1

2n
ωn
ωn−1

δ 6
Cε
δε

(
δn

2n
ωn

) 1
p

.
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C’est à dire :

∀ε > 0,∃Cε > 0,∀δ > 0, δ1+ε−n
p 6 2n(1− 1

p)Cε ωn−1 ω
1
p
−1

n .

Ce qui est exclu dès lors que 1 + ε− n

p
< 0, c’est à dire p <

n

1 + ε
.

Le réel ε étant arbitraire, la conjecture est donc impossible pour p < n.

Ceci étant, cela nous amène à la conjecture de la fonction maximale de Kakeya telle qu’elle est
posée généralement.

Conjecture 4.3. Fonction maximale de Kakeya

∀ε > 0,∃Cε > 0,∀f ∈ L1
loc(Rn),∀δ > 0, ‖f ∗δ ‖Ln(Sn−1) 6

Cε
δε
‖f‖n .

4.3 Lien avec la conjecture de Kakeya

Sans plus attendre nous allons démontrer que la conjecture de la fonction maximale de Kakeya,
même dans sa forme naïve, entraîne la conjecture de Kakeya.

Théorème 4.5. Si pour tout ε > 0, on a Cε > 0 tel que ∀f ∈ L1
loc(Rn), ∀δ > 0,

‖f ∗δ ‖Lp(Sn−1) 6
Cε
δε
‖f‖p ,

alors tout ensemble de Besicovitch de Rn est de dimension de Hausdorff égale à n.

Démonstration. Soit E un ensemble de Besicovitch. Soit s < n, montrons queHs(E) = sup
d>0
Hs
d(E) 6=

0. Fixons donc d > 0 assez petit, par exemple d <
1

2
. Soit enfin ∪j∈NBj un d − recouvrement

de E que l’on peut supposer constitué de boules ouvertes d’après proposition 1.1. Pour j ∈ N,
Bj = B(xj, rj) avec rj <

d

2
.

L’objectif étant de trouver une constante c > 0, indépendante du d− recouvrement, telle que∑
j∈N

rsj > c.

Pour ce faire commençons par regrouper les boules par rayons similaires, on pose pour tout

k ∈ N∗ : Jk =

{
j ∈ N : rj ∈

[
1

2k
,

1

2k−1

[}
, ainsi que Gk = ∪j∈JkBj.

Pour v ∈ Sn−1, E contient au moins un segment unité de direction v, notons Iv un tel segment.
On peut alors opérer un tri des directions v suivant le groupement de boules rencontrant Iv. En
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effet, on pose pour k ∈ N∗ : Sk :=

{
v ∈ Sn−1 : |Iv ∩Gk| >

d

k2

}
, où |.| désigne la mesure extérieure

de Lebesgue 1-dimensionnelle sur la droite Iv.
On a bien l’égalité ∪k∈N∗Sk = Sn−1, puisque sinon, ayant l’égalité :

1 = |Iv| 6 |∪k∈N∗ (Iv ∩Gk)| 6
∑
k∈N∗
|Iv ∩Gk|,

l’existence d’un v dans Sn−1\ ∪k∈N∗ Sk entraînerait |Iv ∩ Gk| <
d

k2
pour tout k ∈ N∗, et donc∑

k∈N∗
|Iv ∪Gk| 6

∑
k∈N∗

d

k2
; ce qui impliquerait :

1 6
∑
k∈N∗
|Iv ∪Gk| 6

∑
k∈N∗

d

k2
6

1

2

π2

6
< 1.

Fixons v ∈ Sn−1. On peut donc poser k tel que v ∈ Sk. Posons aussi f = 1Fk où Fk =
∪j∈JkB(xj, 10rj). Nous allons tâcher de minorer f ∗2−k , et d’utiliser la conjecture de la fonction
maximale de Kakeya afin d’obtenir la minoration de

∑
j∈N

rsj telle que désirée. Notons av le milieu

de Iv.
Il va s’agir d’abord de minorer |T 2−k

v (av) ∩ Fk|, pour ce faire nous allons intégrer 1Fk suivant
toutes les hauteurs du cylindre, ces dernières n’étant autres que les translatés de Iv par un vecteur
orthogonal à Iv, de norme inférieure à 2−k. Il nous faut donc étudier ces translations : posons z0 un
tel vecteur de translation et G′k := z0 + Gk, I ′v := z0 + Iv. Ci-dessous, la situation est représentée
pour n = 3.

En fait la translation est suffisamment petite et Fk suffisamment épais pour que l’on aitG′k ⊂ Fk.
En effet, si x ∈ G′k, alors x = y + z0 avec y ∈ Gk. Ainsi il existe j tel que ‖y − xj‖ 6 rj et donc :

‖x− xj‖ 6 ‖y − xj‖+ ‖z0‖ 6 rj +
1

2k
6 rj + rj 6 10rj.

Puisque v ∈ Sk, cette inclusion entraîne :

d

k2
6 |Iv ∩Gk| 6 |(Iv ∩Gk) + z0| 6 |I ′v ∩G′k| 6 |I ′v ∩ Fk|.

On a donc une minoration de |I ′v ∩ Fk| indépendante de la translation. L’intégrale telle que
voulue va donc nous apporter une minoration de |T 2−k

v (av) ∩ Fk|. Calculons en effet :
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Figure 4.2 – T 2−k

v (av) avec n = 3
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|T 2−k

v (av) ∩ Fk| =
ˆ
T 2−k
v (av)

1Fk(x)dx

=

ˆ
BRn−1 (0, 1

2k
)

ˆ
Iv+z0

1Fk(t) dt dz0

=

ˆ
BRn−1 (0, 1

2k
)

|(Iv + z0) ∩ Fk| dz0

>
d

k2

∣∣∣∣BRn−1

(
0,

1

2k

)∣∣∣∣
=

d

k2

(
1

2k

)n−1

ωn−1

=
d

k2
|T 2−k

v (av)|,

où le domaine d’intégration BRn−1

(
0,

1

2k

)
est inclus dans un plan de dimension n− 1 orthogonal

à v.
On peut donc directement passer à la minoration de f ∗2−k , avec toujours v ∈ Sk tel que fixé, on

a :

f ∗2−k(v) = sup
a∈Rn

 
T 2−k
v (av)

1Fk(x)dx >
|T 2−k
v (av) ∩ Fk|
|T 2−k
v (av)|

>
d

k2
.

Donc :

‖f ∗2−k‖p >
(ˆ

Sk

(
d

k2

)p
dv

) 1
p

=
d

k2
|Sk|

1
p .

Or la conjecture de la fonction maximale de Kakeya donne :

∀ε > 0, ∃Cε > 0, ‖f2−k‖p 6 Cε2
kε‖1Fk‖p.

Donc on a, pour tout ε > 0 fixé :
d

k2
|Sk|

1
p 6 Cε2

kε|Fk|
1
p .

Ainsi :

|Sk| 6 Cε
k2p

dp
2pkε|Fk|

6 Cp
ε

k2p

dp
2pkε

∑
j∈Jk

10nrnj ωn

< Cp
ε

k2p

dp
2pkε10n

1

2n(k−1)
ωn|Jk|

= Cp
ε

(
10nωn
dp

)
k2p2kpε−n(k−1)|Jk|.
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Posons C(p, n, d) :=
10nωn
dp

.
Remarquons que :

k2p2kpε−(k−1)n

2−k(n−2pε)
=
k2p2kpε+n

22kpε
= 2n

k2p

2kpε
,

est borné en k. Donc on aM(n, p, ε) tel que k2p2kpε−(k−1)n 6M(n, p, ε)2−k(n−2pε). Posons
∼
C(n, p, ε, d) =

Cp
εC(p, n, d)M(n, p, ε), alors :

|Sk| 6
∼
C(n, p, ε, d)2−k(n−2pε)|Jk|,

pour tous les k tels que Sk 6= ∅ puisque Sn−1 = ∪k∈N∗Sk. L’inégalité est triviale lorsque Sk = ∅, on
a donc cette inégalité pour tout k ∈ N∗.

On peut donc finalement en venir à la minoration de la somme des rayons à l’exposant s, pour
cela prenons ε <

n− s
2p

, de sorte que s < n− 2pε, puisque les rayons sont strictement plus petits

que 1, on a :

∑
j∈N

rsj >
∑
j∈N

rn−2pε
j

>
∑
k∈N∗

∑
j∈Jk

rn−2pε
j

>
∑
k∈N∗

2−k(n−2pε)|Jk|

>
∼
C(n, p, ε, d)−1

∑
k∈N∗
|Sk|

>
∼
C(n, p, ε, d)−1|Sn−1| > 0.

On pose alors C :=
∼
C(n, p, ε, d)−1|Sn−1| indépendant du d− recouvrement.

On a bien
∑
j∈N

rsj > C > 0.

4.4 Résolution dans le cas n = 2

A présent nous allons démontrer la conjecture de la fonction maximale de Kakeya dans le cas
n = 2. En fait, pour être exact, nous allons donner une majoration un peu plus forte valable pour
δ 6 1, la démonstration précédente sera donc toujours valable. Nous aurons ainsi démontré la
conjecture de Kakeya dans le cas n = 2.
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Théorème 4.6.

∃C > 0, ∀f ∈ L1
loc(Rn), ∀δ > 0, ‖f ∗δ ‖L2(Sn−1) 6 C

√
log(1/δ)‖f‖2.

Remarque 4.4. Pour tout ε > 0, δε
√

log

(
1

δ

)
−→
δ→0

0. Donc pour δ 6 1, ∃Cε > 0, δε
√

log

(
1

δ

)
6

Cε. Cette dernière inégalité implique bien celle désirée.

Démonstration. Commençons par construire une fonction φ : R −→ R qui nous sera bien utile.
Soit v ∈ C∞c (R) ⊂ S(R) d’intégrale sur R égale à 2. On pose alors u ∈ S(R) sa transformée de
Fourier inverse. Ainsi on a :

u(0) = ̂̂u(0) = v̂(0) =

ˆ
R
v = 2.

On choisit alors λ > 0 tel que la fonction u
( .
λ

)
soit supérieure à 1 sur [−1, 1]. On pose alors

φ :=
(
u
( .
λ

))2

.
Ainsi φ ∈ S(R), est une fonction positive, plus grande que 1 sur [−1, 1], et sa transformée de
Fourier est à support compact puisque :

φ̂ =
̂(
u
( .
λ

))2

=
̂
u
( ·
λ

)
∗
̂
u
( ·
λ

)
= λ2 (û(λ·))2 = λ2 v2(λ·) ∈ C∞c (R).

Passons à présent à la démonstration à proprement parler, posons ψ : R2 −→ R définie par

ψ(x1, x2) =
φ(x1)φ(x2

δ
)

δ
. On pose aussi ρvδ : x 7−→ 1

2δ
1T δv (0)(x), de sorte que :

f ∗δ (v) = sup
a∈R2

(ρvδ ∗ f) (a).

En observant les deux cas x ∈ T δv (0) et x /∈ T δv (0) séparément, on a ρe1δ 6 ψ, avec e1 le premier
vecteur de la base canonique de R2. On en déduit f ∗δ (e1) 6 sup

a∈R2

(ψ ∗ f)(a). Ainsi, si pour v ∈ S1 on

note Pv l’application linéaire envoyant v sur e1, et que l’on note ψv := ψ ◦ Pv, on a donc :

f ∗δ (v) 6 sup
a∈R2

(ψv ∗ f)(a).

On a alors les inégalités suivantes :

f ∗δ (v) 6 ‖ψv ∗ f‖∞ = C ′
∥∥∥∥̂̂ψvf̂∥∥∥∥

∞
= C ′

∥∥∥∥ξ 7→ ˆ
R2

e−ixξψ̂v(x)f̂(x)dx

∥∥∥∥
∞

6 C ′
ˆ
R2

|ψ̂v(x)||f̂(x)|dx,

où C ′ dépend de la normalisation choisie pour la transformée de Fourier. Or par l’inégalité de
Cauchy Schwarz on a :

ˆ
R2

|ψ̂v(x)||f̂(x)|dx 6

(ˆ
R2

|ψ̂v(x)||f̂(x)|2 (1 + ‖x‖) dx
) 1

2

(ˆ
R2

ψ̂v(x)

1 + ‖x‖
dx

) 1
2

.
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Un calcul explicite donne ψ̂(x1, x2) = φ̂(x1)φ̂(δx2). Puisque la transformée de Fourier est une
opération linéaire, on a aussi ψ̂v = ψ̂ ◦ Pv. Par conséquent, φ̂ étant bornée, on voit que ψ̂v est
bornée indépendemment de v, notons en M un majorant.

Notons aussi [−η, η] un segment contenant le support de φ̂. Par le calcul explicite de ψ̂, on peut
avoir une idée de son support.

Figure 4.3 – Support de ψv avec v = e1

Sur ce dessin on a divisé le support en 3 parties, parties qui vont être celles intervenant dans

la majoration de
ˆ
R2

ψ̂v(x)

1 + ‖x‖
dx 6M

ˆ
R

1

1 + ‖x‖
dx, où R désigne le support de ψ̂v. Or la fonction

x 7→ 1

1 + ‖x‖
ne dépend que de la distance euclidienne de x à l’origine. Le support de ψ̂v n’étant

alors qu’une rotation de celui de ψ̂e1 , on peut supposer v = e1, la majoration obtenue restera
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valable pour tout v ∈ S1. On calcule,
ˆ
R

1

1 + ‖x‖
dx =

ˆ
[−η,η]2

1

1 + ‖x‖
dx+

ˆ
R\[−η,η]2

1

1 + ‖x‖
dx

6 |[−η, η]|2 + 2

ˆ η

−η

ˆ η/δ

η

1

1 + ‖x‖
dx2dx1

6 4η2 + 2

ˆ η

−η

ˆ η/δ

η

1

1 + |x2|
dx2dx1

6 4η2 + 4η

ˆ η/δ

η

1

x2

dx2

= 4η2 + 4η log

(
1

δ

)
.

On peut donc poser C, indépendemment de v, tel que :
ˆ
R2

ψ̂v(x)

1 + ‖x‖
dx 6M

ˆ
R

1

1 + ‖x‖
dx 6 4Mη2 + 4Mη log

(
1

δ

)
C log

(
1

δ

)
.

Ainsi :

‖f ∗δ ‖2 =

ˆ
S1
|f ∗δ (v)|2 dv

6
ˆ
S1

(ˆ
R2

|ψ̂v(x)||f̂(x)|2(1 + ‖x‖) dx
ˆ
R2

ψ̂v(x)

1 + ‖x‖
dx

)
dv

6 C log

(
1

δ

) ˆ
S1

ˆ
R2

|ψ̂v(x)||f̂(x)|2(1 + ‖x‖) dx dv

6 C log

(
1

δ

) ˆ
R2

|f̂(x)|2(1 + ‖x‖)
(ˆ

S1
‖ψ̂v(x)‖dv

)
dx

6 C log

(
1

δ

)
‖f̂‖2

2

= C log

(
1

δ

)
‖f‖2

2.

La dernière égalité étant obtenue par théorème de Plancherel.
Nous avons donc démontré la Conjecture de la fonction maximale de Kakeya dans le cas n = 2,

on a donc bien la Conjecture de Kakeya dans le cas n = 2.
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