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Introduction

This project is situated within the framework of index theory and its developments since the 1960s.
The cornerstone of this theory is the famous Atiyah-Singer theorem, which we aim to partially
re-prove here using some modern tools developed since the 1980s.

Let M be a compact manifold without boundary, D an elliptic differential operator. Then D
is a Fredholm operator, and its index satisfies :
Ind(D) = ([T*M],ch([op]) A Tdar).

The Atiyah-Singer theorem aims to establish a connection between algebraic properties of a dif-
ferential operator, which are properties related to the solutions of a partial differential equation, and
geometric properties of the considered space. The algebraic translation of different invariants led to
the birth of K-theory. This is an important field of study today. It provides a new way to analyze
partial differential equations. The new tools developed, such as Connes’ tangent groupoid and the
deformation into a normal cone, offer a new approach that allows for visualization of phenomena
and facilitates the exploration of generalizations of the theorem. These generalizations were more
challenging to envision using the initial, more "technical" approaches.

The global strategy of the Connes’s proof by deformation groupoids is the following one:

First:
We use groupoids of deformation and K-theory to construct the map:

K ]T'OK evg)] L Kol(e
KO, (T*M) —— Ko(Co(T* M)} 22N (o (Gtamy) XYy (01 x )
z
Second:

All the elliptic operators are Fredholm in this context.
Then we show that the index map Ind : Ell(M) — Z could be factorised through K{, (T*M)
using the symbol map. Then appear a new map I ndg/[ which make this triangle commutative.

EUM) 7,

| i

K9 (T*M)

top

This map is called the analytical index.
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Third:
We show that the map we construced in the first step is equal to the analytical index map. Namely
Ind]a\/[ = K()(ﬁ;)) o Ko(evl) o [Ko(f) o Ko(evo)]il.

Fourth:
We introduce a last deformation from the analytical index map Ind), producing new K-theoretical
links which will provide the right side of the desired equality.

In this document we will be focused on the first step. We will develop the tools we need to
construct the map from K?OP(T*M ) to Z. We will also begin to explore the concept of Morita
equivalence which is a strong notion in K-theory. Even if it will not help directly to construct the

map we want.

The chapter [1| will be devoted to the notion of groupoids: In the section we define different
notions of groupoids, we state some of their first properties and we study few examples. With
section [I.2] we look at the numerical functions defined on a groupoid to construct C*-algebras over
it and we study two examples which will be usefull at the end of this document. The section [1.3
of this chapter could be avoided for a first reading. We will not use its notions elsewhere in the
document. In this section we are attached to define a new notion of equivalence between groupoids
which is more adapted to K-theoretical studies.

The chapter [2] goal is to construct a geometric deformation in terms of manifold, namely the
deformation to the normal cone: We begin in section [2.I] by defining the normal bundle of a pair
of manifold, and we establish some of its properties. Then in section [2.2| we use this bundle to
construct the deformation to the normal cone of a pair of manifold. We show some of its properties,
especially functoriality. We finish this chapter with section [2.3] where we compute explicitly the
charts of a deformation to the normal cone on an easy example.

In the chapter [3| we encode the deformation to the normal code using groupoids, and we use
K-theoretical properties to finally construct the map Ko (7 ) 0 Ko(evy) o [Ko(F) o Ko(evp)] ™ : In
section [3.1] we translate the deformation between manifolds in a deformation between groupoids by
defining the tangent groupoid of a Lie groupoid. Then we establish a link between the involved
C*-algebras. And we exploit these links using K-theory. Finally in section [3.2] we use these links
on a specific example which involve the Connes’s tangent groupoid. Then we use more K-theory to
get the map we want to accomplish the first step of the Atiyah-Singer theorem proof.



Chapter 1

Groupoids

1.1 Definition and example

A groupoid denoted ¢ —= G | or only G, is a small category in which all morphisms are

invertible. Formally G (resp. G(9) denote the set of morphisms (resp. the set of objects) of
the category. This category is endowed with maps coming from the categorical structure:

e Two maps s,t: G — GO called respectively source and target which maps a morphism
to its source (resp. target) object.

e A product map m : Go — G called composition, where Gy = {(g,h) € G x G : t(h) =
s(g)}. Elements of such a couple are called to be composable and their product will be
denoted gh.

e An application u : G©) — G which maps an object z to its identity map 1.
e An application i : G — G which maps an arrow to its inverse.

Notation : For € GO we denote by G* (resp. G,) the t — fiber (resp. s — fiber) associated
to . We also call orbit of x the subset t(G;) and we denote it O,.

Remark 1.1.2
The following facts are checked:

e s(gh) = s(h), t(gh) =t(g) V(g,h) € G2
e s(g)=tlg™") Vgeg
o (gh)k = g(hk) Y(g,h),(h,k) € Go

* lypg=9=9lyy Y9€9

Remark 1.1.3

Conversly, finding sets G and G and maps s, ¢, m, u, i satisfying these relations is enough to
define a groupoid.

We will define our groupoids using arbitrarily the definition or the last remark.

5
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This purely algebraic structure is a generalization of multiples common ones (sets, groups, ...).
Example 1.1.4

To a set X we can associate the trivial groupoid {1, :2z € X} —= X defined by the trivial
category associated to the set X.

Example 1.1.5
Every group G define a groupoid with one object * by fixing the category G :

{Obj ={*

Morg(*,%x) =G

In these two cases, maps are easily defined. Actually these groupoids are special cases of action
groupoids:

Example 1.1.6 (action groupoid)

GxX —» X
(g:2) = gz
X x G—= X by setting the category

From a group G acting on a set X, . We can define the action groupoid

Obj = X
Mor(z,y) ={9g€ G:gx =y}

We can also construct an action groupoid by defining the maps s,t, m, u, 3.
Example 1.1.7 (action groupoid - 2"¢ construction)

GxX —= X

(g,x) +— gz’ and we define the groupoid

As previously we take an action
X x G—= X by setting:

o s(z,9g)=x

o t(x,9) =g.x

o m((hy,9),(y,h)) = (y,gh)

o u(z) = (2,eq)

o i(x,9) = (9x,97")

More generally we can construct a groupoid associated to an equivalence relation.
Example 1.1.8 (Equivalence relation groupoid)

If a set X is endowed with an equivalence relation ~, we recall that its graph is defined by
Graph(~) ={(z,y) e X x X :x ~y} C X x X.
Then we define the associated groupoid by the category:

Obj = X
Mor = Graph(~)
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denoted Graph(~)——=X .

We should mention the two extremal cases:

o If ~ is defined by = ~ y if and only if x+ = y, then we get the diagonal groupoid
Ax——=X

o If z ~y for all z, y in X, then we get the pair groupoid X x X —= X .

Even if this groupoid look really simple, it will play a great role in the next pages.

A morphism F from a groupoid ¢ ——=G® to another H# —=H© is a functor between
underlying categories.
More explicitely, it is a pair of maps (F : G — H, f: GO H(O)) such that:

e V(g:z—y)€G, (Flg): flx) = fly) eH
e Y(g,h) € Ga, F(gh) = F(g)F(h)

o vz €GO, F(1,) =1y,

eV(g:x —y) €G, F(g!) = F(g9)~! (here it is a consequence of the two previous
statements)

These four conditions are equivalent to the commutation of five diagrams (one for each struc-
tural map (s,t, m,u,i). Usually to denote it we only write:

Q—>F H orjustg—>F H .

|

GO 40

In the previous definition, if F and f are injective, then G —=G© is said to be a sub
groupoid of H ——=H©) .

It is tempting to define a notion of isomorphism from this definition. But we shall see that this
definition is too restrictive for our use of K-theory.

We will speak of strict morphisms to refer to the notion defined above, and not to confuse it
with the notion of Hilsum-Skandalis morphisms which we will define later.

A groupoid ¢ =—=G is said to be topological when G and G(©) are topological spaces,
G is Hausdorff, s, ¢, m,u are continuous with these topologies and 4 is an homeomorphism.

In many natural examples, G is not Hausdorff without causing any problem, that is why we only
require G ) to be Hausdorft.

When we will have to integrate functions on our spaces, we will usually need local compacity
properties. In these cases we will using the following kind of groupoid:
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A groupoid ¢ ——= G is said to be locally compact when it is a topological groupoid, each
element of G has a compact neighborhood (Hausdorff), and s is open.

For each locally compact groupoid, the target map ¢ is also open.

0]

-
-

t =sot, sis open, i is an homeomorphism, then t is open.

A groupoid g /=@ (0) is said to be a Lie groupoid if G and G () are smooth manifolds, G (0)
is Hausdorff, s,t, m,u are smooth, 7 is a diffeomorphism, s a submersion.

Remark 1.1.15

A Lie groupoid is a locally compact groupoid because R" is locally compact, t = s o i then ¢
is a submsersion too, and a submersion is open.

These hypothesis gives us some structural properties.

Let ¢ —=G a Lie groupoid. For z € G we have:
e G, and G* are submanifolds of G
e G =G, NG" is a Lie group
e The orbit O, is a submanifold of G0

e 4u:G0 3 Gisan embedding of G in g.

e G, and G% are fibers of submersions, then they are submanifolds of G.

e G7 is a submanifold beacuse it is the intersection of two submanifolds of G.
We endow it with the restriction of m and 7 to G7.

o O, is the image of G, by the target map, then we can get the factorization

G ﬂ»@x . The action of G¥ on G, is free and proper (translation

G2/9z

action). Then the quotient is a manifold, and then so is O,.

e It is enough to differentiate the identity s o u = Idgo) to check that the
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differential map of w is injective. Moreover it is an homeomorphism on its
image, then u is an embedding.

Example 1.1.17 (Tangent bundle groupoid)

If M is a manifold, then we define T'M —= M , which will be a Lie Groupoid, by setting
forx e M, v,we T, M:

s(z,v) = t(z,v) = pri(z,v) =z ;5 (z,0)(z,w) = (x,v +w) ; i(z,v) = (z,—v) ;
u(z) = (@, 01, 0m)-

In this case we have G, = G¥ = GF = T, M (Lie group which is a submanifold of TM) ;

O, = {z} is a submanifold of M. And M= ™ is an embedding of M in T M.
— (l’, OTZ M)

Example 1.1.18 (Action groupoid: rotation on the circle)

We set for all this example # € R\ 7Q. Our concern is the action of Z on S! by rotations of
ZxS' — St

(n,z) +— ze""

This example illustrate how orbits of a simple action could arise pathological spaces, which
is one justification for the use of action groupoids.

angle 6.

Indeed, let’s see the quotient of S* by the orbits of this action : S'/O endowned with quotient
topology.

This space is a non Hausdorff one, actually its topology is the trivial one:

Let V a non empty open subset of S' /O, then if 7 is the canonical projection on the quotient,
7~1(V) is open in S!. But because # is not a ratio of 7, then the orbits O, are dense in the
circle. Then for each z € S!, O, intersects 7~1(V) and then we could find z € S! such that
7(z) = m(z) and 7(z) € V. In conclusion S'/O = 7(S') C V and then S'/O = V.

The other approach is to avoid the quotient and to study the groupoid associated to the
action.

St x Z—=S' is defined for z € S', n,m € Z by:

s(z,n) =z ; t(z,n) =" ; (e"z,m)(z,m) = (z,m+n) ; i(z,n) = (9"2,—n) ;
u(z) = (z,0).

In this case we have G, = {(z,n) :n € Z} 2 Z ; G ={(ez,n) :n € Z} =7 ;
G? = {(z, 5)} because 6 is not a 7 ratio ; O, = {ze"" : n € Z} countable and dense.

Even if our point is the study of Lie groupoids, a lot of our results will remain true on topological
and locally compact groupoids. That is why we will state them on these more generals kind of
groupoids when it is possible to do so.

1.2 (C*-completion of a groupoid

For a topological groupoid ¢ —= G | we denote by C.(G) the vector space whose elements are
continuous functions from G to C compactly supported.
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A Haar system over a locally compact groupoid ¢ =—= G(©) is a family of measures (v* )eeg©®
on the fibers G*, finite over compact sets such that the following two axioms holds:

e Left invariance: Vy € G, VA C G50 150 (A) = v*0)(L,(A)) with

Lo gsn — gt

N . , the left translation map.

g0 — C

1S continuous.
T = o fdUT
g:v

e Continuity: Vf € C.(G),

Remark 1.2.2

By the left invariance of the measure, we can verify that we have :

Vv €g, VvV fsimple function, /

oo f ) = /gtw)(f oL,-1) dvt™),

We can then show by density that we have this equality for continuous functions with compact
support, L? functions, etc.

We now fix a locally compact topological groupoid G endowed with a Haar system.

Let f,g € C.(G). We define the convolution of f and g, by the map (when it is defined) :

frg:G37— | )f(oz)g(oflv) dv' ().
gt

Let f,g € C.(G). Then, we have :

L. fxgeC(9);

2. associative property : (f*g)*xh= fx*(gxh).

1. The continuity of f * g is obtained using continuous dependency of an integral
on a parameter theorem. Plus, the support of f x g is also compact.

2. Via translation invariance and Fubini’s theorem, we have :
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(el = [ (F)ahtay) wOa)

/gtm /gt(»y) )h(a_l’Y) dut) (1) dpt ()
N /Qt(w) e [[Jt(w) g(rra)h(a™ty) ' (a)| dv™) (7).

We set : I(1) = [gu) gt a)h(a=y) At (a). We also have t(y) = t(a) =
t(7). Then, by taking s(7) = t(7~'y), we obtain :

1= [ 160 % h )] o Lms(a) v a)
ino. /gs(w [9() x h(-"HT 1)) (@) dv*(a)
Z/ g(@)h(a 7 1y) T ()
Ggt(r—1v)

= (g*h)(r71).

Thus, we have :

[(f +g)*hl(v) = F)(g*h)(r~1) dv'O(7) = [f * (g * B)](7)-

gt

The vector space C.(G) endowed with convolution product and the involution defined by

f=(f" 19— f(y71)) is an *-algebra.

From a locally compact groupoid and a choice of an Haar system, we built an algebraic object:
the *-algebra C.(G). Now our goal is to incorporate some analytic taste to our object by building a
C*algebra from it. Then we will be able to use K-theory on it.

We begin by setting a first norm on C.(G):

For f € C.(G), we set

| Il := sup max( ¥)|dv® (y / |f (v _1 )| dv®( ))
z€G(0)

This quantity is finite and define a norm on C.(G).

S
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We define the groupoid’s full C* algebra of G, denoted by C*(G,v) or C*(G), to be the
completion C. (g)” U

In practice, this C*-algebra can be difficult to compute, especially the norm of the different
elements. For this, we will mainly focus on another completion of C.(G), called reduced. This will
be sufficient for our study ; moreover, these two C*-algebras coincide in many cases. To do this, to
each element f of C.(G), we will associate a family of representations.

Let f € C.(G). For x € G we define :

m(f) : L%G%v®) — L2(G®,v7)
g = [ fae 9(@)faly) &) ()]

and we will denote this one by :

m=(f) : LQ(Q’“",I/””) — Lz(gw,ym)
g > gx*f

)

as it is an extension of the convolution operation from C.(G) to another domain.

In the previous definition, 7, (f) is well defined, it is a continuous operator, and its operator
norm is such that |7 (f)|| < ||f|l1-

We will show all these points at the same time, by getting an inequality. Let
feC.(G), zeg®.
For g € LQ(Q“,Vx), for v € G* .

lg* f(y Lﬂ/ fla™ty)dv®(a)
< / lgl@)llf (o )L )] 2 (o)

(/ 9(@)2 (o) dv (o )1/2(/ fo )l (o ))1/2«15.1).

But using translation we have :

/ £ (@™ y)ldv" () = / £ )™ (o)
Gge gt
= / [Fla™H)]dv D (a)
Gs(v)
=/ L f @@ @) < £
gtr=)




1.2. C*-COMPLETION OF A GROUPOID 13

Then, Vy € G*,

1/2
g F()] < ( /g ] |g<a>|2|f<a—w>rduf<a>) 11"

Wa are now able to check that the map 7 — ¢ * f(v) has its square modulus
integrable on G*:

x f 2dv”® )P f (o ') |dv® (o) dv®
= f a)l? f a 1y)|dv*® v () (Fubini

-

~
<lIfl

< II£1IE llll3-

Then g f has its square modulus integrable, and then 7, (f) is well defined. More-
over ||mx(f)(9)ll2 < [Ifll1]lgll2, as mx(f) is linear, it is a bounded operator and

[l (A < ([ f1]1-

Then the objects {7, },cg) are representations of C.(G) in the Hilbert space L?(G”,v").

For f € Cc(G), we set || f|lr = sup,cgo [|mz(f)]|. It defines a norm ||.||; called the reduced
norm.
Using this norm we define the C*-algebra C.(G)
Cr(G).

eRTALALE

called reduced C*-algebra of G, denoted

Now we will see some examples of explicit computations of reduced algebras.

Example 1.2.11 Pair of manifold

Let M a manifold with a measure v. We take the pair groupoid M x M —= M that we
met in the previous section.

Then in this case, the translated meaures v* defined on {x} x M = G* by v*({z} x A) = v(A),
for z € M and A any measurable subset of M, they define a Haar system on our groupoid.

To deal with this example we will admit two lemmas: for zg € M,

o Vf€Co(M x M), msy(f) € K(L?>({xo} x M))

o Truo(f) : F € Co (M x M)} o2taoraan) — k(L2({mo} x M)

Let z,z € M: Using the left invariance of the measure, we have that the left translation
L*{z}x M) — L*({z} x M)

g = [(z,9) = 9((z,2)(2, ) = 9(z,y)]
particular its norm is equal to 1.
We can also use this invariance to show that 7, (f) = L(y.) o m.(f) © L(; ). Then we have

170 (O = [l (Ol

L : . .
maps  (@?) is an isometry. In
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Then we have || f||, = supgear |72 ()| = |72 (f)||, with g € M.
We fix such a xg € M, then we set the map:

Moot (Ce(M x M), |I.Ir) —  (K(L*({zo} x M)), [I.I)
f = on(f)

, which is well defined because of the first lemma.

The space K(L?({xo} x M)) is closed (as the closure of finite rank operators) in B(L?({zo} x
M)) which is a complete space. Then K(L?({z¢} x M)) is complete.

Moreover this map is continuous because it is an isometry.

Then we can use the extension theorem proved in appendix, to get a continuous linear exten-
sion:

Moot Co(M x M) — K(L*({xo} x M))
If f e CfHM x M), then we have (f,), a sequence of C. (M x M) such that f, = f

Then putting || follr = |7z (fr)|| to the limit, we have || f|l, = |7z, (f)]|, then 7y, is still an

isometry. In particular it is an injective map.

Let & € K(L?({xo} x M)), then using the second lemma we get a sequence (f,), of

Ce (M x M) such that mg,(fr) = k. Then (fy)n is a Cauchy sequence, and C;f(M x M)
n—-+0oo

is complete as a completion of C.(M x M). Then we have f € C;(M x M) such that

i —+> f- Then following the construction of the extension 71';0, we have :
n—-+0o0o

71—;0 (f) = limp 400 Tz (fn) = k.
Then m,, is surjective.

Then we have an isomorphism : C(M x M) = K(L*({zo} x M)) = K(L*(M)).

Example 1.2.12 Riemannian vector bundle

Let p: F — M a Riemannian vector bundle above a manifold. For x € M, we denote by E,
the fiber p~1(z).
This bundle define a groupoid G with: s =t =p; (z,v).(z,w) = (x,v+w) ; i(x,v) = (z, —v)
; u(x) = (z,0g,).

Our goal is to show that C}(E) = Cy(E™).
We define the fiberwise Fourier transform as: Vo € M

[X(E,) =t L*(E})
Flo, = Fu: 1 —ip(v)
— (gp — @2 fET e~ g(v)dv)

which is, according to Fourier theory, a bijective isometry.
Moreover if we canonically identify E, and its bidual, then F,0F,(g) = goo where 0 = —Idgn.
We also know that the Fourier transform convert a convolution product in a usual product :

Vf,9 € L*(Ea), Fu(f * g) = (2m)"/2Fu(f) Fu(9).
We will apply these properties fiberwise, then for f € C. (G), g € L*(E}), we get:

(Fzoma(f) o ]:x_1>(g) = fz(”df(f)(]:x_l(g))) = Fu((Fzoo(g))x f) = (27T>n/29}-:v(f)

Then the operator F, o m,(f) o F; ' is the operator "multiplication by (27)"/2F,(f)".
But the function F,(f) is bounded, and we know the subordinate norm of such operators
1Pz 0 ma(£) 0 Fo Ml = 11(2m)™ 2 Fo () lloo, 2
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Then for f € C.(G) we have :

1£1lr = sup [z (f)]| = sup [|Feoms(f)oFy || = (2m)™? sup | Fu (£)lloo,x = 7)1 F(£)lloo, 5
zeM xeM xeM

which is continuous

Then we can define: Ce(E),]-II-) : (Co(E™), ”HooE)

f F(f)
becatse |F(f)oe.+ = ebarall il
The normed vector space (Co(E*),|.||c0,r+) is complete, then by extension theorem of the
appendix, we can extend F as F : CF(E) — Co(E*).
With the same argument we used with 7,,, we have H]—N"(f)HOO’E* = WHJCH’"’ then F is
injective.

Using Fourier theory on vector bundles, we can show that the image of F contains a class of
functions which is dense in (Co(E™*),||.]|lcc). Then using the closeness of the image, we can
show that this map is sujective, then is an isomorphism.

This allows us to conclude that C;(E) = Cy(E).

1.3 Morita Equivalence

This section is isolated from the others. None of the notions, and none of the result of this section
will be used in another one. Also this section is more technical and can be avoided for a first reading.

As we have seen, many mathematical objects can be written in terms of groupoids, in particular
topological spaces with a topological subspace. Or manifold with a submanifold. Let’s discuss this
case in particular.

One way of constructing a differential manifold is to start from a topological space with an
open covering. This produces a topological information. Then we define maps to form an atlas,
which is part of the differential structure. We then have a natural equivalence relation through the
existence of diffeomorphisms. The existence of a diffeomorphism means that two manifolds have
the same differential structure and consistent topological structures with respect to the underlying
topological spaces, as well as the open coverings chosen for each of them.

The development that follows is rooted in the fact that the K-theoretic properties we seek to
express depend in the first place on the underlying topological space and its possible open coverings.

We shall therefore concentrate on defining a weaker notion of equivalence between groupoids
which generalises the classical notion of groupoids isomorphisms in the sense of functors. This is
Morita’s equivalence.

Let’s start by defining the terms.

Throughout this section, groupoids will be assumed to be topological unless further details are
given.
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We call a generalised covering of a topological space (X, O(X)), an applicationU : I — O(X)
from a set I to the topology of X, such that X = J;c; U(i).

In practice, the image of ¢ € I by U will be denoted U; instead of U(i), in the same way as
the generalised covering will sometimes be denoted U or {U;}icr, or even{l;}; if there is no
risk of confusion about the set 1.

Intuitively, a generalised covering is a covering in which the same set can be counted several
times.

The disjoint union (or sum) of generalised coverings is defined as follows: if (X, O(X)) is a
topological space, U : I — O(X) and V : J — O(X) are two generalised coverings, then
the application :

IuJ —s O(X)
L, Ju®) kel
V() ifkelJ

is still a generalised covering, which we denote U LI V.

Remark 1.3.3

Since the set I U J from the previous definition is only a set of pairs of the form "(ele-
ment,label)", there is no possible duplication, even when I = J (which does not prevent two
different elements from being sent to the same open set by U or V) and the order is not
important in a set. Thus, I UJ = J U I, and therefore Y LUV =V UU.

We also define another operation on generalised coverings which will be useful later

Let X, Y topological spaces. And let f: X — Y a continuous map.
Let U : I — Ox and V : J — Oy two generalised converings of X and Y.
Then we call pull back of V in U according f, that we denote U} (V), or only U*(V), the
following covering;:
L{}"(V): IxJ — Ox
(,9) = [N

Remark 1.3.5

We can see that each open set Wy, of Z/l}‘ (V) is contained in a particular space U; with k = (i, ).
This way to "include" the generalised covering L{}k (V) in U will be useful later.

We will now refine the pre-existing topological groupoids to take account of the information
provided by a generalised covering of the underlying space.
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If G—=G© is a topological groupoid and U = {U,}aes a generalized covering of G,
then the Cech groupoid associated with G and U, denoted by G, —= QZE{O) , or only Gy, is
defined by |_|(O{75)€I2 ggg — yeg Ua » With :

(

s(Ua, 9,Us) = (s(g),Us)

tUa, 9,Up) = (¢(9), Ua)
Va,ﬁ,’yEI,VgEQ ,heguﬁ Vel § Ua,g,Us)Us, hUy) = U, gh,U)
( CHQJ/IB) (uﬁvg 171/{04)

\ (x7u(1) - (uou]]-aryuoc)

The sets |_|(a B)er? Qu and | | ,c;Ua are endowed with the disjoint union topology, so that
the groupoid Gy is a topologlcal groupoid

Each object is assigned a label according the open set they belong to, and each arrow is doubly
labeled according to its departure and arrival objects.

Since the open sets can intersect, certain objects and certain arrows are duplicated when there
are several open spaces to which they belong.

We now construct the means to define a generalized notion of groupoid morphism.

Let ¢ —=G© and H—=H© be two topological groupoids. We call 1-cocycle from G

to M a strict morphism from Gy to M, where Gy denotes the Cech groupoid of G associated
with a covering U of G(©)

In the same way that we deal with compatible atlases when we define a manifold structure on
a topological space, we are now going to define an equivalence relation on the 1-cocycles of fixed
groupoids which translates the concordance of the morphisms.

Let ¢y : Gy — H and ¢y : Gy — H be two cocycles from G to H associated with the
generalized covering U and V of G(9. These two cocycles are said to be equivalent, denoted
wyu ~ py, if there exists gy @ Guuy — H, a cocycle associated with the generalized
covering U UV, such that the following diagramm commutes :

/wuuv
\gv

where the injectives arrows are the canonical injections of groupoids.

Guuv
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Remark 1.3.9

With the previous notations, it should be noted that, by functoriality, we have the same

diagrams for the objects :

(0) Pl

Guiy \
S~

The relation thus defined is an equivalence relation on the set of 1-cocycles between two fixed
groupoids G and H.

Reflexivity :

Let ¢y @ Gy — H be a l-cocyle associated with a generalized covering U. We
denote by U and U the two copies of U in the disjoint union of U and U. We then
define the 1-cocycle ¢ 4 associated with U LU = U LIU Dby :

Vge Gg«;, Ui 9.Us) = euUs, 9,U;)
Vge gZL;{’;, i Ui, 9.U;) = ou(Us, g,Uy)

Vge g“ , o 9.U5) = euUs, g,U;)

(Vg€ gg;, o Ui, 9, Us) = ouUi, g, U)
and also :

vV 61;{\25 Sou u(x u) Sog{(xaul)

It is then enough to check the functoriality of ¢ - with respect to the applications
m, s, t, u, i of Gy - in each of the above cases in order to be sure that ¢ -
indeed defines a 1-cocycle, we will then have the commutativity of the diagram via
the definition of g .

We will only check the functoriality with the source map s in the case of a g € ggl :
J
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In each case, the functoriality of ¢ 5 is a consequence of that of ¢y.
Symmetry :

Since the sum of two generalized coverings is a commutative operation, the definition
of the equivalence relation is symmetric, which concludes.

Transitivity :

Let vy : Gy — H, oy : Gy — H, and @y : Gyy —> H be 1-cocycles associated
respectively to U, V, and W. We suppose that ¢y ~ oy et oy ~ . Thus,
we have @y @ Guuy — H et oyuw @ Gyuw —> H two l-cocycles associated
respectively to U UV and V U W, such that the diagramms

Gu Gy
A T
my Py H o Guuw v H
Gy Gw

commutes.
Let’s construct @y @ Guuw — H.

For z € U;, we have @) (2, U;) = ) (x,U;) and for z € Wj, @z, W) =
SOZ(/){ (‘777 Wj)-

If g € gﬁ;, then wyowUi, ¢, U;) = oy, g,U;) and, if g € gﬁv";, then
cuuw Wi, g, Wj) = ow(Wi, g, Wj).

Let g € QZ{YZ We search how to define ¢y nv(Wi, g,U;). The idea is that, to go
from U to W, we can go through V in a canonical way.

Because V = {V; }rek is a generalized covering of G We have k,l € K, such that
s(g) € Vi and t(g) € V). Thus, we have the following decomposition :

(W’iv g?“]) = (W’L7 ]lt(g)7 Vl)(Vl, g, Vk)(vka ]ls(g)vuj)7

which leads us to set pyiw (Wi, Ly(g), V) (Vis 9, Vi) puy Vi, Ls(g) Us), where the
different terms are all composable thanks to the functoriality of the applications

Pyuw, Py, Luuy-
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Let us verify that this quantity is independent of the choice of the open sets Vi and
V. If s(g) € Vi N Vi and t(g) € V; N Vy, then :

SOVUW(Wiv]lt(g)7Vl) SDV(ngka) SDMLIV(Vkv]ls(g%uj)

= ovuw Wi, Lyg): Vi) ov((Vis Ly(g), Ve )Virs 6, Vi) Vi, L), Vi) ouw Vi, L), Us)

= ovuw Wi, Lig): Vi) oy (Vis Lig)s Vir) o0V, 9. Vi) oy Virs Lsigy, Vi) uny (Vis L), Us)
= ovuw Wi, Lyg), Vir) oy Vi, 9, Vi) oy Virs L), Us).

We can therefore state unambiguously :
Crw Wi, g:Us) = ovuw Wi, L), Vi) ovVi, 9, Vi) puny Vi, L(g), Uy),
where s(g) € Vi and t(g) € V. Similarly, for g € g%j, we set :
ouuw Uiy 9, Wi) = uuy (Ui, Lygy, Vi) ovVi, 9, Vi) ovow Vi, Lg), Wi),

without ambiguity. It therefore remains to verify that, thus defined, @y is a
1-cocycle. Let’s check the functionality with respect to the source map in one case,
the other checks will be done on the same model. Consider the case where g € QZZ: i,
Then , we have :

s(euuw (Wi, 9,U;))
- S(SOVUW(W’M ]lt(g)v Vl) SDV(Vb 9, Vk) QDMLIV(VIW ]15(9)7uj))
- S(SOUI_IV(Vka s(g)» ]))
= ¢l (s(9),U))
= oy (s(9).Uj)
= ey (s(9),Uj)
= SDZ(/)II_IW(S(Wivg7uj))'

Thus, wyuw : Guuw — H is a cocycle and by construction, the diagram

S

LPuuW

N

commutes. So we have gy ~ .

We therefore have an equivalence relation.

If g—=G© and H—=H© are two topological groupoids, we define the Hilsum-
Skandalis morphism from G to H as an equivalence class of 1-cocycle for the previous equiv-
alence relation.

For a 1-cocycle ¢y : Gy — H, we will denote its class [py] : G --+ H, or only ¢y : G --» H.
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The class of Hilsum-Skandalis morphisms will be denoted by Grpdgs(G, H).

We have a canonical map from the set of strict morphisms in the set of Hilsum-Skandalis
morphisms : Grpd(G,H) — Grpdys(G,H).

For ¢ : G — H a strict morphism from the groupoid G to H, we will denote its image in
Grpdys(G,H) with [¢], or only ¢ again, if there is no risk of confusion.

Let G—2>7H a strict groupoid morphism. We set 2 = {G©} the trivial gener-
alised covering of Q(O).
Then we set the cocycle ¢y defined by:

Vg€ G, ou(G?,9,.99) =0lg) i Veed®, of(«,69) = (2).
Then we can immediately check that we have a 1-cocycle from G to H:

Il

For this reason, we will sometimes speak of generalized morphisms instead of Hilsum-Skandalis
morphisms.
Now we have a new notion of isomorphisms, then it is natural to try to compose them. At first we
will see what a "composition" of 1-cocycle looks like, and then we will check that it is well defined
according the 1-cocycle equivalence.

Let G, H, and I three topological groupoids. Let ¢y, @y two 1-cocyles from G to H and from
H to K associated to the generalised converings ¢ and V of G0 and H(®. In total we have:

Gu N and Hy LK
G 4 HY gk
Pu Py

Then now, to define a 1-cocycle from G to K which could correspond to a composition, let W =
{Wi ;}i; be the generalised covering Ll;o (V) which is the pull back of V in U according ¢y, We
u

recall that we have the privileged inclusions W; ; C U; and gogl (Wij) CV;. Then we define ¢y by:

Wiy i
Vg € ng;JJ; @W(Wil,juga Wizdz) = SOV(VJ'U ou(Uiy, 9,Usy), ij)

Ve € W, LPOW(I‘,Wi,j) = 90?}(808{(%“1')7)}]')
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We have to check that it defines a 1-cocycle, once again we will only show the compatibility with
7'1 -71

the source map, the others compatibilities are proved the same way. For g in Gy, Wigia®

S(SOW(Wh,jmg’ Wiz,jQ)) =

V)

(v Vs puUiy, 9,Uiy), Vi)
sWVivs puUiys 9,Uiy ), Vi)

s(ouUiy s 9,Uiy)), Viy)

e(s(9), Usy), Vi)

?/V(S(g) 12,32)

?/V(( lmlagawiz,jz))

([
S

I
S € € €

vl
vl
v

S

Then we have a 1-cocycle.

If we denote ¢y«(y) the 1-cocycle we just built from ¢y and ¢y, we have to check that this
construction is coherent with the quotient, namely:

Let G, H and K three topological groupoids. Using the previous notations, the map:

GHs(g,H)XGHs(H,IC) — GHs(g,IC)
([pul, [ev]) = ew)]

is well defined.

Let ¢y, @57 two 1-cocycles from G to H associated to the generalised coverings U
and U of GO

Let @y, ¢y two 1-cocycles from H to K associated to the generalised coverings V
and V of H©.

We suppose that oy ~ ¢ and oy ~ ;. Then we get ¢, 7 G, ;7 — H and
vy - Hyp — K such that the 1-cocycle equivalence diagrams commute.

Let’s show that ¢y« vy ~ ¢ @)’

We denote W = U*(V) and W = 14*(V). Then we set Py to be:

V g€ g i Jl @WHW(Wil,jpga Wiz,jQ) = (pw_ﬁ}(vju Soz,{uz](uilvgauh% VjQ)

l]2

Wy
Vge gf;v' m @WHW(WZ&JUQ’ Wiz,jz) = @vm}(vjp Souuz](uiugvuiz), ij)

12,52

W”Ll Jl — ~

Vge g WWUW(WZ&JUQ’ Wizdé) = (Pvuﬁ(vjlv Souuﬁ(ﬁiugauiz)’ Vj2)

12 ]2

\V/ g€ gwfl N QPWHW(WiLjpga Wiz,jz) = @Vuﬁ(vjla Souua(uh?g:ulé)’ ij)

2> ]2

and

V$ € W,]7 WLIW(:U W,]) = SD g(@gug(%uz)ﬂjg)
VLUGW’], ("E W:J) 900 ~( 0 ~(CU:Z/{i)?)}j)

WLIW
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To check this define a 1-cocycle, once again we check it only with the source map,

. Wi,
and only in one case : g € G-,
12,72

S(SOWHW(WHJU%WZ'QJQ)) = S((pv W lea(;ouuu(ung,u ) ]7 ))
Vhagpz,{uz}(ulugau ) V ))
Pt (uil 9 Z/{iz )) )

I

S

< ©

C

<1

—~

V)]

—~ A

< O
C
<1
—
VAl
—

1%

<‘0(1))|_I17 (@gug(s(g), 1/71'2)7 ij)
© (9)s Wis i)

<’0(1)/VI_IW S(Wihjpgv Wiz,j2))'

Then we indeed have a 1-cocycle, and by definition we indeed have the commuta-
tivity of the 1-cocycle equivalence diagram:

‘/L’DV\)I_IW

WLIW

\/

Then @) = ow ~ @55 = Ve )" The map is well defined.

With the previous notations, the class [‘Pu*(V)] will be denoted [py] o [py], and called
Composition of the Hilsum-Skandalis morphisms [py] and [¢y]. We will also refer to the
1-cocyle py+ vy as pull back I-cocycle of py by pu.

Then we have a way to compose Hilsum-Skandalis morphisms:
o: Gpus(G,H) xGus(H,K) — Gus(G,K)
(leul, [ov]) = pv] o [pu]

| /

Let G, H, K and L four topologcial groupoids.

Let ([@u]a [SOV]a [SOW]) S GHS(gaH) X GHS(,HJC) X GHS(’Cﬂﬁ)a
then we have ([pw)] o [pv]) o [pu] = [ew] o ([ev] © [eul).

-
-

Let G, H two topological goupoids. If we denote Idg and Idy the strict identity morphism
of G and H, then :

V(leul : G -->H) € Gus(G,H), [eu] o [Idg] = [eu] = [Idn]  [u].

-
-
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We will only prove the first equality, the second one is obtained by the same
process.
Let’s compute the pull-back 1-cocycle of ¢y by Idg, we call it f, then:

g{g(o)} ﬂ g gu % H.

{GOV Uiy =Tdg" U) NGO = {((z,GO), 1) : x € Uy}
fo((xvg(o))vuj) = QOU(IdQ(‘T7g(O))’uj) = QDU(:L"uj)v and

FU:, (G, 9,69),Uy) = ouUhs, 1dg(G", 9,G'),U;) = ou(Ui, 9, Uj).
Then we can easily check that this 1-cocycle f is equivalent to .
Eventually [¢y/] o [Idg] = [f] = [eu]-

We denote Grpdps the category whose objects are the topological groupoids, and whose the
morphisms from G to H are the elements of Grpdys(G,H). The composition of morphisms
is the composition of Hilsum-Skandalis morphisms defined above.

Two topological groupoids G and H will said to be Morita equivalent if there exist two
Hilsum-Skandalis morphisms [¢] : G --» H and [¢)] : H --» G such that:

[¥] o [¢] = [dg] and [¢] o [¢] = [Idy].

In this case we will denote G M H.
The relation it defines is an equivalence relation.

" Example 1.3.19 Cech groupoids

Every topological groupoid is Morita equivalent to its Cech groupoids.

Let ¢—=G© and g, :;gb(? ) a topological groupoid and one of its Cech groupoid
associated to a generalised covering U of G(0).

For this proof, the Cech groupoid Gy :;gz(f) will be denoted H —=H© to avoid
confusions.

Let H -[Q—OL G and H [-T/J—M-J G obtained by the 1-cocycles:

P ,ng(f) — g Yy Gu=H — o
Gy, Ui,9,.6,).G) — g ; Us g, Uy) > (Ui, g,U;)
(2, U, G) -z (@) = (oU)

Now we will show that [¢] o [ty = [Idg] and [¢y] o [¢] = [Idy]. Let’s compute these
compositions as computing the pull-back morphism that we used to define the composition
of Hilsum-Skandalis morphisms.
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Computation of [g] o [1y] :

Let’s compute the pull-back 1-cocycle : Gy M H H{g } - G.

The pull-back generalised covering is defined as Z/IZZM({QZE{O)})Z .= WHHG )) NU; = U;.
Let f:G . {g(o)}) Gy — G the pull-back 1-cocycle, it is defined by :

1O, Uy) = () (x,Uy), 67") = @ and FUs, 9.Uy) = 9(GY" Yu s, 9.Uy), G)) =
Then we check immediately that f is equivalent to the canonical 1-cocycle induced by Idg.

Then [Idg] = [f] = [«] o [¥]

Computation of [¢y] o [¢] :

Let’s compute the pull-back 1-cocycle : H 256G Gy L, H.

{6
The pull-back generalised covering is defined as {gu to)oy = (©9)~L(U;). Let’s call it
V={V;} ={(e")"'U))}-

Once again let h : Hy — H be the pull-back 1-cocycle, it is defined as:

RO (@, U), Vi) = (e (2, Us), ng ) ts) = (z:14) and

h(VZ,(uk,g,Z/{l) ) d}U( ( ?(ukagvul) gl/{ )7 ) ¢M(ulagvu) (u’ugvuj)
Then now we have two 1- cocycles to compare:

Idy : Hg(o) — H h - Hy

— H
(Q(O),(Uk,gagl) ng{O)) — (uk,g,ul) ; (Vi,(uk,g,ul),vj') — (Z/{i,g,l/[j)
((xauk)vgu ) = (.T,Z/{k) ((l‘,Uk),VZ) — (xuuz)

Actually they are equivalent as we hope. To see it we must build a 1-cocycle ® associated to
the generalized covering V Ui {QZE{O)} such that the following diagram

HyLig®y /
comiutes.

There is only on way to define ¥, and one way to define ¥ for the arrows whose ends are
both labelled in V or both in {Qg))}. Let’s define ¥ for arrows which start with a label in
{QL(?)} and ends with the label in V.

We set O(Vy, (Us, g, Uh), G) = Uy, 9,Lh).

Now, as usual, we will only check the functoriality according the source map only in this
case:

(0)}

SOV, Un, 9,U), ) = s(U;, 9, L)
= (s(g),Uy)
= Id%((s(9).Ur). G,)
= °((s(9),14),Gy)
= (s(Uy, 9,U1), Gy,)
= 0(s(V}, Ur, 9,U1), G3)).-
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Then eventually [Idy] = [h] = [Yy] o [¢].

Then we can conclude that G M Guy.

Example 1.3.20 Topological manifolds and point

Let M be a smooth manifold, let M x M —= M it product groupoid. Let also
{1,} —={x} the trivial groupoid with one point. We will show that these groupoids

are Morita equivalent : M x M = {1.}.

We consider the trivial generalised coverings {M} and {{*}} of M and {+} and the Hilsum-
Skandalis morphisms [ppry] : M X M --» {1} and [pgy] @ {1} --» M x M, induced
by:

oy - (M x M)y — {1 o=y 0 L — (M x M)
(M, (z,y),M) +~— 1, and {1 Lo {+}) = (20,70)
(va) = % (*7 {*}) = o

, with g € M a fixed point. As we did in the previous example, we now have to compute
one representative of the composed equivalence class (3] © [piy] and [wpg] © wianl;
once again we compute the pull-back 1-cocycles.

Computation of [cp{M}] o [go{{*}}]:

We can easily show that all the 1-cocycles with value in the groupoid {1,} ——¢ {x} are
equivalent (all objects and arrows will be sent to *x and 1, by every l-cocycle, then they are
compatible). In particular we have [pany] © [pgey] = [Ida,]-

Computation of [pgray] o [prary] @ We begin with the pull-back generalised covering

{M}P({{x}}) = (6lan) ") M = My = {(z, M) : 2 € M}
Then we can compute the pull-back 1-cocycle that we will call f:
oz, M) = ¢?{*}}(¢?M}(33,M)7 {*}) = zp and
f(M’ (:L‘v y)a M) = 90{{*}}({*}’ QD{M}(M’ (ZE, y)a M)v {*}) = (:EOa :L'O)-
Then now we have to show that these tow 1-cocycles are equivalent:
fi MxMpny — MxM Tdyxaw s (M XM)gn  — MxM

(x, M) — xo and (z, M) — z

(M, (z,y),M) +—  (x0,z0) (M, (xz,y),M) (z,y)

with M = M , I write them differently to avoid confusions in the next disjoint union.
Once again to define a 1-cocycle ® : (M x M), = — M x M, such that the 1-cocycle
equivalence diagram commutes, the only "not forced" part is the image of an arrow labeled

with {M} and {M} at the same time.

Let’s define only in this case, we set:

O(M, (x,y), M) = (z0,y) and ®(M, (x,y), M) = (z,209). Then the diagram will commute.
Once again we can check the functoriality according the source map in one of these two cases.

S(CI)(M, (x,y),M)) = s(xg,y)
=Y
= IdeM(y, M)
= 3%y, M)
= ®(s(M, (z,y), M)).
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Then [p(1a3] 0 [pgany] = [f] = [Tdmrx ]
Then we can conclude that M x M X {1.}.

The notions we defined in this section will not be used in the rest of this document.

In the context of this document, we are interested in Lie groupoids. As we said in the begin-
ning of this part, Lie groupoids have a natural equivalence relation induced by the usual notion
of isomorphims between differential manifolds. Then our purpose in this part was to construct a
notion of topological groupoids equivalence from the usual notion of compatibles covering. Namely
the Morita equivalence between topological groupoids.

For this report, we will stop these investigations here, but to understand why the new category
Grpdpg that we built, is more adapted to K-theoretical studies than the classical Grpd, let’s spoil
the next part of the Hilsum-Skandalis show.

It is possible to construct a notion of Morita equivalence between C*-algebras such that if two
locally compact topological groupoids endowed with Haar systems are Morita equivalent, then their
full C*-algebras will be equivalent for this new Morita notion. The next point is that, with this new
notion, two C*-algrbras which are Morita equivalent have the same K-theory. It means that, if two
groupoids are Morita equivalent the way we defined above, then they have the same K-theoretic
properties.

Then we can try to understand our two last examples with these considerations.
The first shows us that starting from a topological space endowed with charts (namely a manifold),
we don’t change K-theoretic properties by adding more and more charts. In such a way these extra
charts are useless because they already "decompose" in the previous ones.
The second example is really interesting for this report because later we will have to understand
what is the K-theory of the pair groupoid M x M. Using the previous considerations we can state
that Ko(C*(M x M)) = Ko(C*({1.})) = Ko(C) = Z. But we will also prove it with a different

method using the C*-algebras of compact operators on a Hilbert space. The relation M x M M {1.}
means that these groupoids look alike in such a way, that their covering are compatibles. Let’s take
a look at their categorical structure (considering that we take their trivial covering). Then in the
groupoid {1.}, for each pair of objects (there is only (%, %)), there is a unique arrow from the first
one to the second one. The product groupoid M x M has the same property : to each pair of
objects (x,y) there is a unique arrow from the first one to the second, which is the one we usually
denote (y,x). This property make their coverings compatible.
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Deformation to the normal cone

2.1 Normal bundle

We define the category C3° by fixing its objects to be the pairs of smooth (possibly non
Hausdorff) manifolds (X, Y) where Y C X is a closed embedded submanifold (closed in the
topological sense, it could have boundary or being non compact).

And the morphisms between two pairs (X,Y) and (M, N) are smooth maps f : X — M
that map Y into N, we denote such a map by f: (X,Y) — (M, N).

In this context, if Y is not set-theoretically included in X, but only embedded : Y N ;

then we will allow us to denote (X,Y) instead of (X,4(Y")) when the embedding is canonical. For
instance, we will denote (R, RP) and not (R™,RP x {0}"P).
The same for the elements of these space, in our constructions we will denote y € Y even if the
element should be in i(Y) C X. For instance if we want to use the source map of a groupoid G,
beacuse GO <% G, then for z € GO, by s(z) we actualy mean s(u(z)) = s(1,) which is z in this
case.

Let (X,Y) € C$° of dimension (n,p) and (U, ) a chart of X. This chart is said to be adapted
to Y if o(UNY) =¢(U)N(RP x {0}"P). Namely:

V(x1,...,2n) € U;[(z1,...,2,) € Y if and only if p(x1,...,2,) = (*1,...,%p,0,...,0)].

Let (X,Y) € C5°. If we denote T'X |y the sub bundle Li,cy T, X then we can define the normal
bundle of X when respect to Y by equivalent ways:

1. As the cokernel of the inclusion : N (X,Y) := Coker(TY — TX|y) = TX|y/TY =
I_lerTyX/TyY

2. As a quotient bundle: 0 — 7Y —— TX|y — N(X,Y) ——0

The idea of the normal bundle is the following: At each point of the submanifold Y, we look
at the vectors tangent to X, and we remove the components which are tangent to Y. Then we get
vectors tangent to X and normal to Y in a certain sense. This construction will allow us to classify
the vectors of T X |y to understand the way Y is embedded in X.

28
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For now on, the normal bundle is only a topological space. We will endowed it with a manifold
structure later. There is two usefull cases where its topology is easier to apprehend:

Now we will see functorial properties of the normal bundle.

To a morphism f : (X,Y) — (M, N) of the category C3° we can associate a map dy f :
N(X,Y) — N (M, N).

Proof
Let f : (X,Y) — (M,N) morphism of the category of pairs of
smooth manifolds. By differentiation and restriction to Y we get

df|y: TX|Y — TM|N
(v) = (fY)dyf(v))

A quotient bundle is defined fiberwise, then it is enough to check that the

dyf : TyX — Tf(y)M
v = dyf(v)

sition with 7 the canonical projection on Ty, M / Ty N.

By using the fact that f maps Y to N, we get that T,,)Y C Ker(mw o dyf), then

we are allowed to define the map from the quotient space. Then we put all fibers

together to get the map:

maps , Yy €Y, passes to the quotient after compo-

Ay f - N(X,Y) N N (M, N)
(y,v mod T,Y) +—  (f(y),dyf(v) mod Tf(y)N)

For every (X,Y) of C5°, N(X,Y) is a manifold of dimension dim X.

As N(R™, RP) = TR |5 (5} /T(R? x {0}l g0} = (BP x {0}) x (R"/(R? x {0}))
which we can identify with R? x R""P =2 R™. Then from an adapted chart (U, ) of
(X,Y), using this identification, we can build a map: (V :=UNY)

Ao : N(U,V) — R™
(:L'?U mod Tfﬂv) — (901(1")7"'730p(w)adz¢p+1(v)?"-7dm()0n(v))

-

€RP €Rn—P

, with ¥ = (9017 ) Qpn)

To make it clear, when we use this identification we will write ¢ = (¢!, »?), and
then dyp(z,v mod T,V) = (o'(z), de?(v)).

Because ¢ and dy are diffeomorphisms, this map is a diffeomorphism on its image
(after identification).
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The map N
o Cy° — c™>
(X,Y) = N(X)Y)
f = dn f

define a covariant functor.
In particular we have dyId(x,yy = Idy(x,y) and dy(f o g) = dn f o dyg.

We already saw that N (X,Y) is a smooth manifold, and dy f is a diffeomorphism.
We can compute dyId x yy easily.

Let f: (M,N)— (A,B) and g : (X,Y) — (M, N) smooth pair morphisms. Then
for (y,v mod T,Y) we have:

(dn f) o (drg)(y, v mod T,,)Y) = (dn f)(9(y), dyg(v) mod Ty, N)

o) [ (dyg(v)) mod Tyog(,)B)

y(f o g)(v) mod Tyoq,B)
;v mod T,)Y).

<

Then (dprf) o (darg) = dar(f o g).

Remark 2.1.7

Until now, an element of N'(X,Y’) was denoted (y,v mod T,Y).

Because we checked that the maps are well defined through the quotient, we will allow us to
denote only (y,v) considering that v already denote the equivalence class, when there is no
risk of confusion.

Previously, to construct a chart of N'(X,Y"), we used a canonical identification : N (R", RP) =
R™. In the next sections we will have to deal with two cases: the first one involves an analogue of
the previous identification, and the second involves a non canonical one. We detail them now.

Let x € M, we have:

0 —— T(M x {x}) —5 T(M x M)|psugsy — N(M x M, M x {x}) —0

4 2

0 ™M BT (M x M)|yqny —  TM 0

with 4; the canonical inclusion, 7 the canonical projection, iz(x,v) = ((z, ), (v,0)), p((x, *), (v,w)) =
(x7w)7 ]((l‘, *)7 (’U?O)) = (:L'a U) and OéM((l‘, *)a (va) mod T(a?,*)M X {*}) = (:va)

Rows are exact, squares commutes and j is an isomorphism, then using the fives lemma:
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If M is a manifold, then:
an: N(M x M, M x {x}) — TM
((z,*), (v,w) mod T )M x {x}) +—  (z,w)

is an isomorphism.

If M is a manifold, we denote by Ajs the diagonal submanifold {(x,z) : z € M} endowed with
the obvious charts (Ay, ¢ X @), where (U, ¢) is a chart of M.

0 TAy —S3T(M x M)|a,, ——N(M x M, Ap) —0

| | [
@9 )

0 TM T(M x M)|a,, TM + 0

with i the canonical inclusion, 7 the canonical projection, is(z,v) = ((z, x), (v,v)), 0((z, x), (v,w)) =
(z,v —w), j((z,2), (v,v)) = (z,v) and By ((z, z), (v,w) mod T(a:,x)AM) = (z,v —w).
The rows are exact, the squares commutes and j is an isomorphism, then using the fives lemma;:

If M is a manifold, then:
ﬂM: N(MXM,AM) — ™
}_)

is an isomorphism.

((z,z), (v,w) mod Ty 1) An) (z,v —w)

2.2 Cone

In this section we use the normal bundle functor to define another functor called deformation to the
normal cone or DNC' and denoted 2.
Again this functor will start in the category C5° and ends in C*.

Here to define the "object side", we will starts by defining it as a set, then we will study the
canonic case (X,Y) = (R™,RP) to understand what the charts should be. And the last step will be
to define the topology on our set using these charts to define a manifold.

Definition of the set: For (X,Y) € C5°, we set Df = (MN(X,Y) x {0}) U (X x R*) without any
topology.

Case (X,Y) = (R",RP): In this case we will be able to construct an atlas with only one chart.
We will use the same identification of N (R, RP) with R as we already did when we built normal
bundle’s charts.

Then the set D5, could be idendified with (R x {0}) LI (R™ x R*). For more intelligibility, we will
denote it Dj,.

Now we will define a topology on this space, for this purpose we will define a bijection between
Dy and a topological space. We will define a subset of D) to be open if and only of its image by
the bijection is open. We will call this topology on Dj; the topology induced by the bijection.

Let ¢ = n — p the codimension of RP in R™.
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U: RPFFIXR — D?

(v,6:1) = {

(y,£,0) ift=0 is bijective. Its reciprocal is obvious.

(y,t6,t) ift#£0

We denote Z(R",RP) the set D)} endowed with the topology induced by W. By definition of the
topology, ¥ and ¥~! put open sets on open sets. Then VU is an homeomorphism. Moreover on
each point of both spaces, we can differentiate ¥ and U~' on a neighbourhood. Then ¥ is a
diffeomorphism. Then

For 0 < p < n, Z(R",RP) is a n + 1 dimensional manifold with one global chart, namely
(Dp, ¥).

- J

"Example 2.2.2 n=2, 0<p <2

Here are the images of a cylinder in 2(R"™, RP):

The space Z(R™,RP) with its differential structure will bu used to parametrize the general
2(X,Y). In this purpose we should identify some open sets of Z(R",RP):

Let U C R™ open set, V = UNRP the induced open set of RP. As we already did in the previous
section with the global normal bundle A (R™, RP), we use the identification :

TU v 103/ T(V {0}y oy = (Vx{0}xR") /(V x{0} xR x{0}) = V x{0}x(R"/(RPx{0})) = V xR

We recall that a bundle quotient consists of a fiberwise quotient.

Then we set N'(U, V) = V xRY, and set theoretically we get DY = (V xRIx{0})L(U xR*) C Dy.
But DY = ¥(QY) where

RPtI x R —» RPHa

(v,&1) = (y:1)

Then D‘[f is open in Z(R",RP). We denote Z(U, V') the set Dg endowed with the topology induced
by 2(R", RP).

continuous map.

QU — () with 7
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Now we use Z(R"™,RP) and the open sets Z(U, V') to parametrize a general Z2(X,Y).

General case: Let (X,Y) € C5°, let (U, ¢) a chart of X adapted to Y. V =UNY the induced
open set of Y. Set theoretically we have the inclusion Dg C D{f . The set Dg will play the role of
an open set of D{f . We set:

2e) DY —  P(e(U),¢(V)) C 2(R",RP)
B N (dne(y,v),0) if 2= (y,v,0) which is a bijective map.
(o(x), 1) if 2= (z,1)
Indeed we get the reciprocal by stating a map Z(p~!) the same way.
Then we define a topology on Dg by defining a subset to be open if and only if its image by 2(¢)

is open in Z(o(V),¢(U)) C Z2(R",RP).
Then in particular, DY is open, and we denote it Z(U, V) when endowed with this topology.

The map 2(p) then is a diffeomorphism, and then (DY, Z(y)) is a chart of D5

If {(Ui, ;) }i is an atlas of X with respect to Y, we denote by 2(X,Y’) the space Ds* endowed with
the differential manifold structure induced by {(DUzny, D(i)) }i-

We can summerize it saying that:

If (X,Y) € C$° is a pair of manifold, then Z(X,Y) is a smooth manifold. There is a maximal
atlas which contains the charts of the form (2(U,V),v ! o @(p)) where V.= U NY and
(U, ) is a chart of X adapted to Y.

This property gives the "object side" of the functor 2.

Actually the functoriality of Z is a consequence of the functoriality of N'. Using what we know
on the normal bundle, we can generalize what we did to build the charts of Z(X,Y).

For f: (X,Y) — (M, N) morphism of the category C5°, we define:

2(f): 2(X,Y) — 9D(M,N)
(y,v,0) = dyf(y,v) [(y,v) e N(X,Y)
(x,t) =  (f(x),t) [t#0,zeX

- J

Using the same argument as before, this map Z(f) is a diffeomorphism. Using the functoriality
of the normal bundle functor, we can easily deduce that in general Z(f o g) = Z(f) o Z(g) and
2(ld(x,y)) = ldg(x,y)- Then the "morphism side" of & is well defined.

Then:

2.  C3F — c™>
(X,)Y) — 2(X,Y) isa functor.
f = 2(f)

We will end this part by defining an identification which will be usefull later. It corresponds to
the case M = N with the previous notations.
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If X € C3°, then the quotient bundle N (X, X) becomes: N(X, X) =TX| /TX =TX/TX =
X x {0} < X Then calling 7 this isomorphism, we can identify A (X, X) with X.

Because X has a codimension ¢ = 0, there is no cone normal deformation and using the
identification we get: Z(X, X) = (M(X, X)x{0})U(X xR*) = (X x{0})U(X xR*) = X xR.
We will also denote 7 this last isomorphism.

Now if we have a morphism of pairs f: (M, N) — (X, X) then

dvf i (v mod Ty N) = (f(2),def(v) mod TyX) = (f(2),0 mod Ty X) can be

identified with the map :
N(M,N) — X

G mad AT = ) - We will denote it o darf.

Using the same identification we can define:
P(M,N) — X xR
(y,v,0)  —  (f(v),0) |(y,v) € N(M,N) . We will denote it 7 o Z(f)
() = (f2)t) [t#0,zeM

2.3 Example of explicit calculus

In this section we will compute an open set of Z(S!, {*}) where  is a point of S!, say (1,0). We

o n: |-mna[ — U C R?
take the open set U = S*\{x} and 9 o (cos0,sin0)
1

, we get a chart (U, ¢).

one of its parametrization.

Then, if we set ¢ =n~

Let’s compute the normal bundle : N(U,{}) = T.U/T\{+} = T.U = {*} x R.
dom: |—m,m] — T.U c T,S!
Now we compute the normal differential darp: We have \ . <0) ( )\) _ <0) .
1/ S\

Its inverse gives us

which provide us, using the identification :

Then we can define the topology of the cone ng} ({*} x Rx {0}) U (U xR¥)
We have:

2(p) : DY, — Dy c D}
(%,(0,A),0) (2,0)
(cosf,sinf,t) +— (0,1)

Then (\11*1 o .@(@))71 = 9(n) o ¥ gives us a parametrization of .@{[{k}:

P(n)o¥: RxR — & — @{U*}

&0 = (&0 = (*,(0,€),0)
& t) —  (t&t) = (cos(tf),sin(t€),t)




Chapter 3

Connes’s tangent groupoid

3.1 General definitions

Now our goal is the following, starting from a Lie groupoid ¢ —=G(®) | we want to construct a
Lie groupoid of the form 2(G,G0) —=¢G® xR .
Let ¢ —=G( a Lie groupoid, and s, t, m, u, i its structural maps.

Source and target :

Recalling the canonical embedding u : G©) < G, we can see that s and ¢ are actually pair morphisms
5,t:(G,60) = (G GO Then we can consider the maps 7 o Z(s):

2(G,69) - GO xR
(x,v,0) = (s(1z),0) = (z,0) |(z,v) € N(g,g(0>) .
(9,1) > (s(9),1) t#0,9€G

and 7 o Z(t) is defined the same way.
We call these maps 5% and %,

Product:

On the same model we will consider Z(m) and use a canonical isomorphism to define our com-

position mad:

We will consider the isomorphism
P - N(g7g(0))(2) /\/’(g(2)’ g(O))
((z,v mod T,G©), (z,w mod T,G)) ((z,z), (v,w) mod T(x,x)Ag(O)) ’
For the groupoid ¢ ——= G | the composition of arrows m : (G*),G(©) — (G,G©) is a map of
pairs. (We consider G() to be canonically injected in G by the map Aow : z +— (1,,1,)). Then
we get the normal differential:

1 luz

dym : N(G?.GO) — N(G.G)
((1’, :E)a (Uv w) mod T(x,x)Ag(o)) = (JZ‘, d(x,x)m(va w) mod T(x,x)Ag(O))

'then let’s compute d, ,ym (v, w):
et
ps: (6.69) — (G®.6O) pe: (G.69) — (G®,60)
g = (9, 1)) g = (Tyg), 9)

35
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We have daps(z,v mod T,G0) = (ps(x),dyps(v) mod TPS(I)AQ(O)), with ps(z) = (z,2) and
dyps(v) = dyp(Idg X (wo s))(v) = (dpldg(v),dy(uo s)(v)) = (v,dg(uos)(v)).

But d,(uos)(v) € T,G©. Then dyps(z,v mod T,G) = ((z,2), (v mod TG0 mod T,G).
And using the same process we have dapg(z,v mod T,G) = ((z,z), (0 mod T,6, v mod T,G).

Then mops =Idg=mop; = dymodyps= IdN(gyg(o)) = dym o dpp;.
The left equality gives us:

(2,0 mod T,G©) = Idyyg gy (z,v mod T,G)
=dym((z,z), (v mod 7,690 mod Txg(‘))))
= (z,d(zym(v mod 76,0 mod T,G))

Then d(, zym(v mod 7,69, 0 mod T,G) = v mod T,G.
The same way, the right equality gives us d(, ,ym(0 mod 7,69 w mod T,6©) = w mod T,,GO.

Then we are able to compute the normal differential:

dnm : N(G®P, g — N(G,GO)
((z,z), (v,w) mod T(IJ)AQ(O)) =  (z,v+w mod T(x,x)AQ(O)) )

And then we have:

P(m) : 2(6®,GO) — 2(6,6)
((z,z), (v,w) mod T(w,x)Ag(O), 0) +— (zr,v4+w mod T(Z@)AQ(O), 0)
((g,h),1) > (gh,t)

But what we need is to define a product on elements of .@(Q,Q(O)), then we need a map from
2(G,60)2) . Let’s extend the isomorphism ® to the deformation to the normal cone:
29,6 =2(G,99) i x a 2(G.69)
GO) xR
= (NG, GN X {0}UGXR") i X jaa (NG, G?)x {0}UG x R*)

GO) xR

(slice preserved) — |:(N(g, g(o)) X {0}) sad X tad (N(g, g(o)) X {0})

GO xR

[
)

N(G®,6(0)x{0}

pt (G xR

X

L [(g X R*) 0

GO xR

2 @) xRr*

Then we get a new isomorphism ® defined as:

D : 2(G,60)@) — 2(6?,G0)
((z,v mod T,G©,0), (z,w mod T,G,0)) — ((z,z),(v,w) mod T(x’x)Ag(O),O)
((g:1), (h,t)) = ((g,h), ).
m: 29(G.6O)  —  2(G,60)
Eventually we set m% = 2(m) o ®, we get: ((z,v,0), (z,w,0)) +— (z,v+w,0)

((g,2), (, 1)) = (gh,t)

Unitarization:
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The same way we see that the maps u : GO s Gandi: G — G are moprphisms of pair of
manifolds : u : (G, G©) = (G,6©) and i : (G,G©) = (G,G). Then we get:

dyuomt: g0 N(g,g(o))
r = (1;,d.u(0) mod T1,60) = (1,,0)

Passing to the normal cone we get what we will denote u®®:

D(u) om b =y GOXR — (9, g(O))
(,0) — (1,,0,0)
($,t) — (]l:mt)7 t;ﬁO

Inversion:

Eventually we set i%¢ to be:

= 9(): 2(G,69) = 2(G,6)
(z,v,0) = (z, —v ,0)
(9,1) = (g7h1)

We used these maps to define a new groupoid:

Let ¢ —=G( a Lie groupoid with its structural maps s, t, m, u, .
Then we call adiabatic groupoid of G the groupoid (g, Q(O)) — G x R endowned with

the structural maps s%, ¢4 mad 4,24 24 defined above.

The adiabatic groupoid associatied to a Lie groupoid is also a Lie groupoid.

2(9, Q<O)) and G(© x R are smooth manifolds.

G0 x R is Hausdorff beause G(© is Hausdorff.

The maps s%¢, % m 4% are smooth beacuse of the functoriality of 2 and bea-
cuse 7 and ® are smooth diffeomorphisms. Also using the functor 2, i being a
dlffeomorphlsm then 7% = 9(i) is a diffeomorphism too.

The map 5% is a submersion. (Admitted here).

We can see that in the adiabatic groupoid, every object or arrow has a component ¢ € R which
show us on which "slice" of the deformation we are. Our purpose being to study the deforation
near the 0-slice, and the component ¢t € R being preserved by the structural maps, we can restrict
the adiabatic groupoid to the slices indexed by ¢ € [0, 1].

If g—=G© is a Lie groupoid, then we call Tangent groupoid the Lie groupoid got by
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restriction of the adiabatic groupoid to the slices indexed by [0, 1]. We denote it GT

It has the form of (N(g,g(o)) x {0} LU gx]0,1)) —= (g<0) x [0,1]) endowed with the
topology induced by the deformation to the normal cone one.

In such a way, the tangent groupoid encode the deformation that we defined geometrically in
a deformation of Lie groupoids. This deformation takes place from the "t = 1" slice, which corre-

sponds to the groupoid G ——= G until the "t = 0" slice which corresponds to the normal bundle
groupoid N (G, G)—=¢g© .

Now our next step will be to build C*-algebras from these groupoids in order to use K-theory on
these algebras to reveal links between them.

We will show it in details for reduced algebras which are more delicate to manipulate than the
full ones. Then we will state the same properties for the full algebras without a detailed proof, the
arguments being the same.

We begin algebraically with algebras of compactly supported continuous functions. We set:

evo: Co(G7) — CC(N(Q,Q(O))) and €L C.(67) — C.(9)
! = five.go) f = fig

The reduced norms of the algebras C. (QT), Ce (./\/ (G, Q(O))) and C.(G) will be denoted respec-
tively ||.l[,.gr, [|-llr and ||.|lrg

Now we pre compose these maps with the inclusion in their completion by the reduced norm.
Then we get the following maps whose we show their continuity.

The maps:

Ce(GT) Mllrgr) — (CHN(G, GO, || llra)
f = f|N(g,g<0))
Cc(G7) lllrgr) — (CE(G): IlIng)
f > fig
are continuous.

Proof
To construct the different reduced norms, we need families of representation: one
. T
family for each norm. We denote them (ﬂ-(gl"t))(x,t)eg<0>x[071}’ (Wé\/ )xeg(()) and

(ﬂ—g)zeg(o) ’

Let f € C. (QT). Then the operator W?th)( f) acts by convolution with f on the

space L2 ((QT)("”’t)) of square integrable functions defined on the target fiber
associated to (¢, ).
But (gT)@o = 9711} ifr#£0 _

{z} x Ny x {0} if t =0, N, is the normal fiber associated to z.
Then comparing the maps:
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T
) LG (1) L@ x{1Y) | mifig): LG - LA(GY)
g — g*f [Y =g f
We see that their subordinate norms are equal : ||w(ng,1)(f)|| = ||7rg(f|g)||.
. T
The same way with ¢t = 0 we get ||7r(gx’0)(f)|| = H7T£/(fw(g7g(o)))\|.
Then we can conclude that:

T T
Ifiglng = sup IxS(fig)l = sup (=9 (A< sup 78 (DI = [ llngr
zeg(®) zeG(®) (z,)eGM x[0,1]
T T
IN(G,GO)llr N = z \JIN(G,GgON)II = z,0 =~ z,t = rgT
I/ o = sup [ (f M= swp [+ (A< swp 78 (DI =15
2€G(0) 2€G(0) (2,£)€G(©) x[0,1]

Using this continuity, we are now able to extend these maps to the reduced C*-algebra. We call
these maps ev(, and ev].

The two previous maps extends as continous maps with the same subordinate norms:

evg: CHGT) — CIN(G,69)) . ef: CHGT) — C(9)
f = fiv.gon f = fie

We use the extension theorem presented in appendix:

The arrival spaces are complete (they were built ase a completion).
By definition C. (G7) is dense in C(G7) for the reduced norm.
The maps are continuous.

The set Gx]0,1] is open in G, then there is a canonical injection ig : C. (Gx]0,1]) < C. (G7)
obtained by extending the function with zeros.
We now want to extend this map to the reduced C*-algebras:

The canonical injection ig extend to a continuous map i : C;(Gx]0,1]) < C*(GT).

Following the same extension process as before, we only need the map
(€ (Gx]0,1]), [|-llgxj011) = (CF(GT), [l-lg7) to be continuous.

Let f € C.(Gx]0,1]), in particular io(f) is zero on N(G,G®) x {0}.
Then Vz € GO, W(gmfo)(io( f)) = 0. Using this fact, and the fact that

7 () = I )] for € GO and ¢ 0, we get:
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T

lis(Alegr = s 7 (D= s 7 ()]
(x,6)€G(© x[0,1] (2,t)€G(©)x]0,1]
0,1
= s 7PN =1 g

Then the map is continuous.

With the last propositions, the main point to show continuity were the vanishing of some rep-
resentations. Then the supremum of norms over G x [0, 1] reduced to the supremum of norms over
a subset. Now ||.||1 involve a supremum of integrals over the target fibers, we saw that fibers were
preserved, then the vanishing argument is true with these integrals. Then we can do exactly the
same proofs to conclude:

The maps:

Ce (1), Il lhgr) — (C*WN(G, GO, I lliw)
f = finig.g)
Ce(G1) Mlligr) — (C*(G),l.g)
f — fig
(Cc(G%]0,1]), [l hgxjo,) —  (C*(GD), |Ill1.g7)
f > f

are continuous, and then they extend as:

evy : C*(GT) = C*(N(G,6?)) ; evf:C*(GT) = C*(G) it C*(Gx]0,1]) — C*(G")

I

Until now we did the same thing with the full algebras and the reduced ones. And in practice
they are equal really often, this is the purpose of the amenability notion. This is a notion we will
not study.

Now we focus on full algebras, and we build a link between them:

The full algebras previously defined and their maps fit into a short exact sequence :

*
E’UO

0—— C*(Gx]0, 1]) —s *(GT) 20 ¢ (A(G, 6©)) —— 0

Here is a partial proof of this fact.

1 injective :

When we extended ig we saw that : Vf € C. (Gx]0,1]), [lio(f)ll,.gr = Iflr.gx10,1-
Then if f € C}(Gx]0,1]) there exist (f,)n a sequence of C.(Gx]0,1]) such that
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ll-ll.g 10, Il gr
S0, ¢ But 4 is continuous, then io(fn) —Z— io(f). Then:

In

1l gon = I | fallrgagon = 1m lio(fa)llngr = lio(f)lgr-
Then 4g is an isometry between the reduced C*-algebras, then is injective.
eg surjective :

Using the appendix theorem, we have a tubular neighbourhood of N'(G,G®) x {0}
in gT.
Then let U < G open set of compact closure containing Supp(f), let
p : E — Supp(f) vector bundle and ® a tubular adapted diffeomorphism :
o: Ucgh — VCE
(x,v,0) ((x,v,0),0) , with ¢ = pry o p o ® continuous map
(g:1) = (¢ (g,t), 0),9(g,1))

with its values in NV (G, g )
In particular, if (g,t) goes to (z,v,0) in U C GT, then (p(g,t),0) goes to (x,v,0)
in F.

Then let f € C. (N(G,G)). Let x a plateau function with :

O<sx<1l ;5 xgrw=0 5 Xsupp =1

in_ particular, X has compact support. Then let
f: gr — C _ _
(,v,0) f(z,v) , Supp(f) C Supp(x), then f has compact

(g;t) = flelg,1)x(g,t)

support. Moreover f is continuous, then f € C. (QT).

By contruction evo(f) = f.
Then the continuous map evg : C. (QT) — C. (/\/(g, g(0>)) is surjective.

We should extend this surjectivity to the map evy between the full C* — algebras.
To do this we need a better understanding of these algebras. This work will be done
in PhD during the next months.

Imiyg C Kereuvy :

If f € Imig, then f vanishes on N(G,G(?) x {0} and then f € Kere.

Kerevg C Imig :

Admitted

Now using the contractibility of the intervam ]0, 1], we can deduce that:
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The C*-algebra C(Gx]0, 1]) is contractible.
In particular it has trivial K-groups.

Then we can use the six terms exact sequence theorem in K-theory which provide the following
exact sequence:

Ko(ev)
—

Ko(C*(gx]0,1])) —— Ko(C*(GT)) Ko(C*(N(G,6)))

T |

K1(C*(N(G,6D))) —— K1(C*(G")) «—— K1(C*(G%]0,1]))

But because K1(C*(Gx]0,1])) = Ko(C*(Gx]0,1])) = 0, the exactness provides us the fact that:

The map Ko(evg) : Ko(C*(GT)) — Ko(C*(N(G,G))) is an isomorphism.

3.2 Connes’s tangent groupoid

Let M a smooth manifold, we call Connes’s tangent groupoid the tangent groupoid associated

to the pair Lie groupoid M x M —= M after use of the identification N' (M x M, Ap;) =
TM.
We denote it G and it has the form (TM x {0} U M x M x]0,1]) =—= (M x [0,1]) .

Using the same process as in the Deformation to the Normal Cone section, we can build charts
for this groupoid.

To simplify the notations and the process, we will suppose that M admit a global chart (M, p).
Let n = dimM.
p: MxM — R2"

We define the map (5.y) o <§0(w)42r<p(y) gp(gc);p(y)> , then (M x M, ) is a chart of

M x M adatped to Ayy.
Its differential is easily computable according to the differential of . Then we can pass to the
quotient to get the normal differential:

dnp N(M x M, Ayp) — N(R?™ R™ x {0})
(.8 (w,w) mod TegAn) = ((p(€),0), (“eeeipleete) desl)deelw))) -

Then we use the identifications By : N(M x M, Apr) 2 TM and agn : N(R*™R" x {0}) = TR"
defined previously to get a map from T'M to TR"™ that we will also denote da@ for more simplicity.
Then we get:
dyg: TM — TR =R
&v) = (p(8), 3dep(v))
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Then the maps U1 o 2($) gives us a chart of (TM x {0} UM x M x R*)

(€,0,0) ——F (p(€), Lewp(v), 0) —E—— (p(€), 1dep(v), 0)

(z,y,1) (sO(w)-sz(y)’ ()W) t) , (go(x)—gga(y)’ L)) t)
that we could restrict to the Connes’s tangent groupoid. We can also invert it to get a parametriza-
tion, then we get:

From a differential manifold M with a chart (M, ¢) we can define a chart, or a parametrization

of the Connes’s tangent groupoid G4 as follows:

Chart:
Ghan — R™ x R" x [0, 1]
(&v,0) = (0(£), 3dep(v),0)

@y.t) = (@) +eW), ;L0 1)

Parametrization:
R™ x R™ x [0, 1] — G'}(}”
(fa v, 0) = (90_1(5)7 2(d<p*1(5)90)_1(v)a O)
(z,y,1) > (o Nz +ty), ¢ (z — ty),1)

Using that chart, we can understand how the manifold M x M deform itself to T M:

Let (2n)n, (yn)n sequences in a differential manifold M, and (¢,), sequence of R** and let

(€,v) € TM.
The convergence (Zyn,Yn,tn) —+> (&,v,0) in GY¥" is equivalent to the convergences
n—-+00
by —> @
n—-+00

Tn, Yo — Ein M
n—-4o00

<P($n)t;¢(yn) n_)_+>oo d§<,0(’0)

If (X, Y,y tn) n_)—J:@ (&, v,0) in G%", then reading this convergence in the charts we
e(@n)+¢(yn) #(@n)—¢(yn)
have 3 e w(§), - T dep(v) and ty, T 0.

Because w has a limit while ¢, goes to 0, then ¢(z,) — ¢(yn) —> 0.
n n——+0o

The sum ¢(x,,) + ¢(y,) also has a limit, then adding and substracting them we get

that ¢(z,) and ¢(y,) have limits too. The same limit because the difference goes

to 0. Then (xy), ©(yn) - ©(&). Which means that z,, and y, goes to £ in M.
n—-+0o0o

The converse is immediate.
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Let’s use what we did in the previous section on the Connes’s tangent groupoid. We have these
maps:

* Ko(evg) *(ytan Ko(evf) *

To finally get the result we wanted, we will admit the following property:

For the groupoids TM —= M and M x M —= M there are canonical isomorphisms:

CHTM) = C*(TM) and C*(M x M) = C*(M x M).

Then everything we proved for an algebra is true for the other one in this case.

- J

Then we can use the examples of completion that we saw before to state that C;(T'M) =
Co(T*M) (with the isomorphism F) and C*(M x M) = K(L*(M)) (with 7,,).

Then knowing that, by definition K?OP(T*M) = Ko(Co(T*M)).
Knowing also that the Hilbert space L2(M) is the inductive limit of the spaces M,,(C) and that

Ko(M,(C)) = Z, we can state that Ko(K(L*(M))) = Z.

Then putting everything on a diagram, we finally get

F e} eV -1 e K 7}_;,
(T* M) = Ko(Co(T* M) 225 o (atemy) 2o (00 (0 x M) %) Ko((L2(M)))

;

0
K top
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Appendix

Let F and F two normed vector spaces. We suppose F' to be complete. Let A C E a dense
sub vector space and f : A — I a continuous linear map.
Then there is a unique continuous linear extension f : E — F, moreover | f|| = || f].

Unicity:

Let g1 and go two continuous extensions of f. We set the continuous map:
g1Xge: E — FxF
r = (91(2),92(2)). o
Then {g1 = g2} is closed, and contains A. Then it contains A = E. Then g1 = go.

Existence:

Let * € E. Then we have (x,), a sequence of A such that x, A2
n—-+0oo

Then [|f(z) — £(2)ll < [ £z — gl —> 0. Then (f(za))n is a Cauchy sequence
of F. Then a convergent one. We call its limit f(z).

Now our purpose is to define a continuous linear map f using this process. Let’s
check that it is well defined this way. Let (y,), another sequence which converges
to z. Then:

[ (yn) = F @)+ 1f (@) = F@a)ll + 11f (n) = f(2)]
Iy = 2l + e = zal) + 1 (2n) = F(@)I] — 0.

—+00

1£ (yn) = (@)l < |
|

<
<

Then f(yn) Nl f(z). Then f is well defined.

Morevoer, for x € A, we can choose the constant sequence equal to z, then f is an
extension of f.

Using the same sequence argument to approximate f by f, we show that f is linear,
continuous, and || f|| = || f]|-

45
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Let (X,Y) € C3°. An open neighbourhood U of Y in X is said to be tubular if there exists
a vector bundle p : E — Y, a neighbourhood V' of Y (of its zero section actually) in E and a

diffeomorphism ® : U = V C E such that ®(z) = (x,0) if and only if x € Y.

Let (X,Y) € C5°. The submanifold ¥ admit a tubular neighbourhood.
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